ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

DEPENDENCE OF VISCOELASTIC PROPERTIES OF RENNET GELS ON CONCENTRATIONS OF MILK FAT AND SOLIDS

Abstract
From the technological point of view, one of urgent problems is the study of milk coagulation for samples containing a close to natu- ral amount of fat. This paper is devoted to theoretical and experimental study of flocculation and gelation processes in model samples of reconstituted milk containing different amounts of casein (2.5% and 5% by weight) and fat (0%, 2.5% and 5% by weight). Exper- imental study of the viscoelastic properties of milk clot during its formation was made with a dynamic rheometer of our own design characterized by reciprocal translational displacement of the cell relative to the stationary probe. A simplified kinetic mod el of the clot formation process is developed. Flocculation stage of this process is described as growth of fractal aggregates with fractal di- mension D = 2.22. In this case, the average size of the aggregates increases faster than the average distance between them, and if the initial concentration of the casein micelles is sufficient, the system reaches percolation stage, i.e. formation of continuum gel. The next stage is strengthening of the clot due to formation of additional bonds. Based on the proposed model the presence of min imum micelle concentration for gelation is explained. A possible explanation for the proportionality of the elastic modulus and th e loss modulus for gel network is suggested. It is found that decreasing the micelle concentration leads to the lowering of the number of additional bonds per unit volume at the clot formation stage and proportional decrease of the clot strength. For example, at any fat concentration the clot strength wherein the initial micelle concentration twice as much is approximately two times higher. The fat concentration increase also leads to the increase in the clot strength both by reducing the volume available to micelles and by increas- ing the stiffness of the casein chains due to decreasing of their lengths. In addition, protein-coated fat globule surfaces may seem to become the seed centers for flocculation and the formation of additional bonds, thereby increasing the rates of these processes.
Keywords
Milk coagulation, kinetic model, fractal aggregates, percolation, viscoelasticity
REFERENCES
  1. Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk / P. Udabage, I.R. McKinnon, M.A. Augustin // Journal of Dairy Science. - 2001. - Vol. 84. - P. 1569-1575.
  2. Tuinier, R. Stability of casein micelles in milk / R. Tuinier, C.G. de Kruif // Journal of Chemical Physics. - 2002. - Vol. 117. - P. 1290-1295.
  3. Effect of insoluble calcium concentration on rennet coagulation properties of milk / J. Choi, D.S. Horne, J.A. Lucey // Journal of Dairy Science. - 2007. - Vol. 90. - P. 2612-2623.
  4. A phenomenological model of milk coagulation / A.M. Osintsev, E.S. Gromov, V.I. Braginsky // Foods and Raw Materials. - 2013. - Vol. 1(1). - P. 11-18.
  5. Everett, D.W. Dynamic rheology of renneted milk gels containing fat globules stabilized with different surfactants / D.W. Everett, N.F. Olson // Journal of Dairy Science. - 2000. - Vol. 83. - P. 1203-1209.
  6. The impact of the concentration of casein micelles and whey protein-stabilized fat globules on the rennet-induced gelation of milk / Z. Gaygadzhiev, M. Corredig, M. Alexander // Colloids Surf B Biointerfaces. - 2009. - Vol. 68. - P. 154-162.
  7. Rennet-induced aggregation of milk containing homogenized fat globules. Effect of interacting and non-interacting fat globules observed using diffusing wave spectroscopy / M. Corredig, G. Titapiccolo, Z. Gaygadzhiev, M. Alexander // International Dairy Journal. - 2011. - Vol. 21. - P. 679-684.
  8. Interactive effects of milk fat globule and casein micelle size on the renneting properties of milk / A. Logan, L. Day, A. Pin et al. // Food and Bioprocess Technology. - 2014. - Vol. 7. - P. 3175-3185.
  9. de Kruif, C.G. Casein micelle structure, functions and interactions, in: Fox P.F. and McSweeney P.L.H. (Eds.), Advanced Dairy Chemistry: Proteins / C.G. de Kruif, C. Holt, // Kluwer Academic/Plenum Publishers. - 2003. - Vol.1. - P. 233-276.
  10. Dinamicheskiy formograf dlya reologicheskih issledovaniy v pischevoy promyshlennosti / A.M. Osincev, V.I. Braginskiy, D.S. Baburchin, A.N. Pirogov // Tehnika i tehnologiya pischevyh proizvodstv. - 2014. - № 2. - S. 20-24.
  11. Osincev, A.M. Issledovanie mehanizma proteoliticheskoy stadii enzimaticheskoy koagulyacii molochnogo kazei- na / A.M. Osincev, K.B. Qvist // Kolloidnyy zhurnal. - 2004. - № 2. - S. 223-227.
  12. Bremer, L.G.B. Theoretical and experimental study of the fractal nature of the structure of casein gels / L.G.B. Bremer, T. van Vliet, P. Walstra // Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. - 1989. -Vol. 85. - P. 3359-3372.
  13. Casein micelle hydration and fractal structure of milk aggregates and gels / N. Vétier, S. Banon, J.P. Ramet, J. Hardy // Lait. - 2000. - Vol. 80. - P. 237-246.
  14. Scaling and fractal analysis of viscoelastic properties of heat-induced protein gels / M.M. Ould Eleya, S. Ko, S. Gunasekaran // Food Hydrocolloids. - 2004. - Vol. 18. - P. 315-323.
  15. Zhong, Q. Physicochemical Variables Affecting the Rheology and Microstructure of Rennet Casein Gels / Q. Zhong, C.R. Daubert, O.D. Velev // Journal of Agricultural and Food Chemistry. - 2007. - Vol. 55. - P. 2688-2697.
  16. Smykov, I.T. Fraktal'nye struktury rosta v molochnom sgustke / I.T. Smykov // Hranenie i pererabotka sel'- hozsyr'ya. - 2008. - № 3. - S. 14-17.
  17. Smirnov, B.M. Fizika fraktal'nyh klasterov / B.M. Smirnov. - M.: Nauka, 1991. - 136 s.
  18. Doy, M. Dinamicheskaya teoriya polimerov / M. Doy, S. Edvards. - M.: Mir, 1998. - 441 s.
How to quote?
About journal

Download
Contents
Abstract
Keywords
References