Rus / Eng


ISSN 2074-9414 (Print)

ISSN 2313-1748 (Online)
Свидетельство о регистрации
ЭЛ № ФС 77 - 72312 от 1.02.2018 г.

Ответственная за выпуск:
Кирякова Алёна Алексеевна

Выпускающий редактор:
Лосева Анна Ивановна

Учредитель и издатель:
ФГБОУ ВО «Кемеровский
государственный университет»
https://kemsu.ru/

Главный редактор сетевого издания:
Просеков Александр Юрьевич

Контакты:
650000, г. Кемерово, ул. Красная, 6
тел.: +7 (3842) 58-80-24
e-mail: fptt@kemsu.ru,
food-kemtipp@yandex.ru,
fptt98@gmail.com

Подписаться на рассылку содержания свежего номера

Отправить рукопись 
Информация о статье

Количество просмотров: 130

Название статьи ЭКСТРУДИРОВАНИЕ РАСТИТЕЛЬНОГО СЫРЬЯ ДЛЯ ПРОДУКТОВ ПИТАНИЯ (ОБЗОР)
Авторы

Бахчевников О.Н., канд. техн. наук, научный сотрудник отдела переработки продукции растениеводства, ФГБНУ «Аграрный научный центр «Донской», oleg-b@list.ru

Брагинец С.В., канд. техн. наук, ведущий научный сотрудник отдела переработки продукции растениеводства, ФГБНУ «Аграрный научный центр «Донской», sbraginets@mail.ru

Рубрика ОБЗОРНАЯ СТАТЬЯ
Год 2020 Номер журнала 4 УДК 615.322:675.92.027.3
DOI 10.21603/2074-9414-2020-4-690-706
Аннотация Введение. В обзоре рассмотрены вопросы экструдирования растительного сырья для производства пищевых продуктов. Целью исследования является обобщение и анализ англоязычных научных публикаций, посвященных технологиям экструдирования растительного сырья, извлечение информации о рациональных параметрах их осуществления и влиянии на свойства готовых экструдатов.
Объекты и методы исследования. Процесс экструдирования растительного сырья в ходе производства пищевых продуктов. Выполнен систематический обзор научной литературы на английском языке по тематике технологических параметров экструдирования растительного сырья за период 2000–2020 гг.
Результаты и их обсуждение. Анализ научных публикаций по исследуемой теме показал, что экструдирование является одним из самых эффективных способов переработки растительного сырья в пищевые продукты. Выявлены закономерности влияния параметров экструдирования на составляющие растительного сырья. Экструдирование позволяет повысить усвояемость компонентов растительного сырья, в частности протеина и крахмала, а также снизить содержание антипитательных факторов. Процесс экструзии наиболее эффективно протекает при высоких температурах, скорости вращения шнека экструдера и влажности сырья. Выявлено противоречие между необходимостью поддержания высокой температуры и частоты вращения шнека экструдера для эффективного выполнения процесса экструзии и негативным воздействием этих параметров на сохранность питательных веществ.
Выводы. Научные исследования должны быть направлены на выявление оптимальных параметров экструзии каждого вида сырья и их смесей с целью соблюдения баланса между требуемыми свойствами экструдата и сохранностью питательных веществ. Недостаточно исследована тема формирования в процессе экструзии сложных комплексов питательных веществ и влияние на их образование параметров экструдирования. Тематика экструдирования растительного сырья для производства пищевых продуктов является перспективной, но требует проведения дополнительных исследований.
Ключевые слова Растительное сырье, экструдирование, экструдат, технологические параметры, свойства экструдата, питательная ценность
Информация о статье Дата поступления 2 ноября 2020 года
Дата принятия в печать 25 декабря 2020 года
Дата онлайн-размещения 25 декабря 2020 года
Выходные данные статьи Бахчевников, О. Н. Экструдирование растительного сырья для продуктов питания (обзор) / О. Н. Бахчевников, С. В. Брагинец // Техника и технология пищевых производств. – 2020. – Т. 50, № 4. – С. 690–706. https:// doi.org/10.21603/2074-9414-2020-4-690-706.
Загрузить полный текст статьи
Список цитируемой литературы
  1. Offiah, V. Extrusion processing of raw food materials and by-products: A review / V. Offiah, V. Kontogiorgos, K. O. Falade // Critical Reviews in Food Science and Nutrition. – 2019. – Vol. 59, № 18. – P. 2979–2998. https://doi.org/10.1080/10408398.2018.1480007.
  2. Application of extrusion technology in plant food processing byproducts: An overview / W. Leonard, P. Zhang, D. Ying [et al.] // Comprehensive Reviews in Food Science and Food Safety. – 2020. – Vol. 19, № 1. – P. 218–246. https://doi.org/10.1111/1541-4337.12514.
  3. Adekola, K. A. Engineering review food extrusion technology and its applications / K. A. Adekola // Journal of Food Science and Engineering. – 2016. – Vol. 6, № 3. – P. 149–168. https://doi.org/10.17265/2159-5828/2016.03.005.
  4. Bordoloi, R. Extrusion technique in food processing and a review on its various technological parameters / R. Bordoloi, S. Ganguly // Indian Journal of Scientific Research and Technology. – 2014. – Vol. 2, № 1. – P. 1–3.
  5. Singh, S. Nutritional aspects of food extrusion: A review / S. Singh, S. Gamlath, L. Wakeling // International Journal of Food Science and Technology. – 2007. – Vol. 42, № 8. – P. 916–929. https://doi.org/10.1111/j.1365-2621.2006.01309.x.
  6. The application of some food industry by-products in the production of extruded products / A. Jozinović, Đ. Ačkar, J. Babić [et al.] // Enineering Power: Bulletin of the Croatian Academy of Engineering. – 2017. – Vol. 12, № 1. – P. 2–6.
  7. Park, S. H. Principles of food processing / S. H. Park, B. P. Lamsal, V. M. Balasubramaniam // Food processing: principles and applications. Second Edition / S. Clark, S. Jung, B. Lamsal. – John Wiley and Sons, 2014. – P. 1–15. https://doi.org/10.1002/9781118846315.ch1.
  8. Extrusion technology and its application in food processing: A review / S. Choton, N. Gupta, J. D. Bandral [et al.] // The Pharma Innovation Journal. – 2020. – Vol. 9, № 2. – P. 162–168.
  9. Ramachandra, H. G. Extrusion technology: a novel method of food processing / H. G. Ramachandra, M. L. Thejaswini // International Journal of Innovative Science, Engineering and Technology. – 2015. – Vol. 2, № 4. – P. 358–369.
  10. Shelar, G. A. Extrusion in food processing: An overview / G. A. Shelar, S. T. Gaikwad // The Pharma Innovation Journal. – 2019. – Vol. 8, № 2. – P. 562–568.
  11. Navale, A. S. Extrusion cooking technology for foods: A Review / A. S. Navale, B. S. Swami, N. J. Thakor // Journal of Ready to Eat Food. – 2015. – Vol. 2, № 3. – P. 66–80.
  12. Singh, B. Fundamentals of extrusion processing / B. Singh, C. Sharma, S. Sharma // Novel Food Processing Technologies / V. Nanda, S. Sharma. – New Delhi : New India Publishing Agency, 2017. – P. 1–45. https://doi.org/10.31219/osf.io/xqa5n.
  13. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review / M. S. Alam, J. Kaur, H. Khaira [et al.] // Critical Reviews in Food Science and Nutrition. – 2016. – Vol. 56, № 3. – P. 445–473. https://doi.org/10.1080/10408398.2013.779568.
  14. Extrusion-cooking modifies physicochemical and nutrition-related properties of wheat bran / C. Roye, M. Henrion, H. Chanvrier [et al.] // Foods. – 2020. – Vol. 9, № 6. https://doi.org/10.3390/foods9060738.
  15. Ajita, T. Extrusion cooking technology: Principal mechanism and effect on direct expanded snacks – An overview / T. Ajita, S. K. Jha // International Journal of Food Studies. – 2017. – Vol. 6, № 1. – P. 113–128. https://doi.org/10.7455/ijfs/6.1.2017.a10.
  16. Kelley, T. R. Bacterial concentration reduction of food waste amended animal feed using a single-screw dry-extrusion process / T. R. Kelley, P. M. Walker // Bioresource Technology. – 1999. – Vol. 67, № 3. – P. 247–253. https://doi.org/10.1016/S0960-8524(98)00118-7.
  17. Study of starch-lipid complexes in model system and real food produced using extrusion-cooking technology / T. De Pilli, A. Derossi, R. A. Talja [et al.] // Innovative Food Science and Emerging Technologies. – 2011. – Vol. 12, № 4. – P. 610–616. https://doi.org/10.1016/j.ifset.2011.07.011.
  18. Torraco, R. J. Writing integrative literature reviews: Using the past and present to explore the future / R. J. Torraco // Human Resource Development Review. – 2016. – Vol. 15, № 4. – P. 404–428. https://doi.org/10.1177/1534484316671606.
  19. Okoli, C. A guide to conducting a standalone systematic literature review / C. Okoli // Communications of the Association for Information Systems. – 2015. – Vol. 37, № 1. – P. 879–910. https://doi.org/10.17705/1cais.03743.
  20. Lin, S. Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog / S. Lin, H. E. Huff, F. Hsieh // Journal of Food Science. – 2002. – Vol. 67, № 3. – P. 1066–1072.
  21. Food protein-polysaccharide conjugates obtained via the maillard reaction: A review / F. C. de Oliveira, J. S. D. R. Coimbra, E. B. de Oliveira [et al.] // Critical Reviews in Food Science and Nutrition. – 2016. – Vol. 56, № 7. – P. 1108–1125. https://doi.org/10.1080/10408398.2012.755669.
  22. Functionality of extrusion – Texturized whey proteins / C. I. Onwulata, R. P. Konstance, P. H. Cooke [et al.] // Journal of Dairy Science. – 2003. – Vol. 86, № 11. – P. 3775–3782. https://doi.org/10.3168/jds.S0022-0302(03)73984-8.
  23. Alonso, R. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans / R. Alonso, A. Aguirre, F. Marzo // Food Chemistry. – 2000. – Vol. 68, № 2. – P. 159–165. https://doi.org/10.1016/S0308-8146(99)00169-7.
  24. Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal / B. Zhang, G. Liu, D. Ying [et al.] // Food Research International. – 2017. – Vol. 100. – P. 658–664. https://doi.org/10.1016/j.foodres.2017.07.060.
  25. Singh, S. Retention of essential amino acids during extrusion of protein and reducing sugars / S. Singh, L. Wakeling, S. Gamlath // Journal of Agricultural and Food Chemistry. – 2007. – Vol. 55, № 21. – P. 8779–8786. https://doi.org/10.1021/jf071769z.
  26. Effect of extrusion cooking of soy-sweet potato mixtures on available lysine content and browning index of extrudates / M. O. Iwe, D. J. Van Zuilichem, W. Stolp [et al.] // Journal of Food Engineering. – 2004. – Vol. 62, № 2. – P. 143–150. https://doi.org/10.1016/S0260-8774(03)00212-7.
  27. Beck, S. M. Effect of low moisture extrusion on a pea protein isolate’s expansion, solubility, molecular weight distribution and secondary structure as determined by Fourier Transform Infrared Spectroscopy (FTIR) / S. M. Beck, K. Knoerzer, J. Arcot // Journal of Food Engineering. – 2017. – Vol. 214. – P. 166–174. https://doi.org/10.1016/j.jfoodeng.2017.06.037.
  28. Panyam, D. Enhancing the functionality of food proteins by enzymatic modification / D. Panyam, A. Kilara // Trends in Food Science and Technology. – 1996. – Vol. 7, № 4. – P. 120–125. https://doi.org/10.1016/0924-2244(96)10012-1.
  29. Effects of extrusion on the emulsifying properties of rumen and soy protein / A. C. C. Silva, E. P. G. Arêas, M. A. Silva [et al.] // Food Biophysics. – 2010. – Vol. 5, № 2. – P. 94–102. https://doi.org/10.1007/s11483-010-9149-0.
  30. Atukuri, J. Multi-response optimization of extrusion conditions of grain amaranth flour by response surface methodology / J. Atukuri, B. B. Odong, J. H. Muyonga // Food Science and Nutrition. – 2019. – Vol. 7, № 12. – P. 4147–4162. https://doi.org/10.1002/fsn3.1284.
  31. Extrusion of feed/feed ingredients and its effect on digestibility and performance of poultry: A review / M. A. U. Rahman, A. Rehman, X. Chuanqi [et al.] // International Journal of Current Microbiology and Applied Sciences. – 2015. – Vol. 4, № 4. – P. 48–61.
  32. Camire, M. E. Chemical and nutritional changes in food during extrusion / M. E. Camire // Extruders in food applications / M. N. Riaz. – Boca Raton : CRC Press, 2000. – P. 127–148.
  33. Changes in moisture, protein, and fat content of fish and rice flour coextrudates during single-screw extrusion cooking / J. S. Tumuluru, S. Sokhansanj, S. Bandyopadhyay [et al.] // Food and Bioprocess Technology. – 2013. – Vol. 6, № 2. – P. 403–415. https://doi.org/10.1007/s11947-011-0764-7.
  34. Study on different emulsifiers to retain fatty fraction during extrusion of fatty flours / T. De Pilli, R. Giuliani, B. F. Carbone [et al.] // Cereal Chemistry. – 2005. – Vol. 82, № 5. – P. 494–498. https://doi.org/10.1094/CC-82-0494.
  35. Effect of extrusion temperature and screw speed on properties of oat and rice flour extrudates / R. Sandrin, T. Caon, A. W. Zibetti [et al.] // Journal of the Science of Food and Agriculture. – 2018. – Vol. 98, № 9. – P. 3427–3436. https://doi.org/10.1002/jsfa.8855.
  36. Bhatnagar, S. Extrusion processing conditions for amylose lipid complexing / S. Bhatnagar, M. A. Hanna // Cereal Chemistry. – 1994. – Vol. 71, № 6. – P. 587–593.
  37. Arêas, J. A. G. Extrusion cooking: Chemical and nutritional changes / J. A. G. Arêas, C. M. Rocha-Olivieri, M. R. Marques // Encyclopedia of food and health / B. Caballero, P. M. Finglas, F. Toldrá. – Academic Press, 2016. – P. 569–575. https://doi.org/10.1016/B978-0-12-384947-2.00266-X.
  38. Camire, M. E. Chemical and nutritional changes in foods during extrusion / M. E. Camire, A. Camire, K. Krumhar // Critical Reviews in Food Science and Nutrition. – 1990. – Vol. 29, № 1. – P. 35–57. https://doi.org/10.1080/10408399009527513.
  39. Effect of enrichment with stabilized rice bran and extrusion process on gelatinization and retrogradation properties of rice starch / P. Wang, Y. Fu, L. Wang [et al.] // Starch/Staerke. – 2017. – Vol. 69, № 7–8. https://doi.org/10.1002/star.201600201.
  40. Effect of decortication, germination and extrusion on physicochemical and in vitro protein and starch digestion characteristics of black beans (Phaseolus vulgaris L.) / J. de la Rosa-Millán, E. Heredia-Olea, E. Perez-Carrillo [et al.] // LWT – Food Science and Technology. – 2019. – Vol. 102. – P. 330–337. https://doi.org/10.1016/j.lwt.2018.12.039.
  41. Singh, J. Starch digestibility in food matrix: a review / J. Singh, A. Dartois, L. Kaur // Trends in Food Science and Technology. – 2010. – Vol. 21, № 4. – P. 168–180. https://doi.org/10.1016/j.tifs.2009.12.001.
  42. Rafiq, A. Regression analysis of gluten-free pasta from brown rice for characterization and in vitro digestibility / A. Rafiq, S. Sharma, B. Singh // Journal of Food Processing and Preservation. – 2017. – Vol. 41, № 2. https://doi.org/10.1111/jfpp.12830.
  43. Guha, M. Twin-screw extrusion of rice flour without a die: Effect of barrel temperature and screw speed on extrusion and extrudate characteristics / M. Guha, S. Z. Ali, S. Bhattacharya // Journal of Food Engineering. – 1997. – Vol. 32, № 3. – P. 251–267. https://doi.org/10.1016/S0260-8774(97)00028-9.
  44. Dietary fiber concentrates from fruit and vegetable by-products: Processing, modification, and application as functional ingredients / L. E. Garcia-Amezquita, V. Tejada-Ortigoza, S. O. Serna-Saldivar [et al.] // Food and Bioprocess Technology. – 2018. – Vol. 11, № 8. – P. 1439–1463. https://doi.org/10.1007/s11947-018-2117-2.
  45. Effects of extrusion cooking on the dietary fibre content and Water Solubility Index of wheat bran extrudates / S. Rashid, A. Rakha, F. M. Anjum [et al.] // International Journal of Food Science and Technology. – 2015. – Vol. 50, № 7. – P. 1533–1537. https://doi.org/10.1111/ijfs.12798.
  46. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods / C. Brennan, M. Brennan, E. Derbyshire [et al.] // Trends in Food Science and Technology. – 2011. – Vol. 22, № 10. – P. 570–575. https://doi.org/10.1016/j.tifs.2011.05.007.
  47. Dar, A. H. Effect of extrusion temperature on the microstructure, textural and functional attributes of carrot pomacebased extrudates / A. H. Dar, H. K. Sharma, N. Kumar // Journal of Food Processing and Preservation. – 2014. – Vol. 38, № 1. – P. 212–222. https://doi.org/10.1111/j.1745-4549.2012.00767.x.
  48. Guzman-Tello, R. Colour loss during extrusion cooking of β-carotene-wheat flour mixes as an indicator of the intensity of thermal and oxidative processing / R. Guzman-Tello, J. C. Cheftel // International Journal of Food Science and Technology. – 1990. – Vol. 25, № 4. – P. 420–434. https://doi.org/10.1111/j.1365-2621.1990.tb01099.x.
  49. Antioxidants in thermally treated buckwheat groats / H. Zieliński, A. Michalska, M. K. Piskuła [et al.] // Molecular Nutrition and Food Research. – 2006. – Vol. 50, № 9. – P. 824–832. https://doi.org/10.1002/mnfr.200500258.
  50. Effects of cold extrusion process on thiamine and riboflavin contents of fortified corn extrudates / B. Bilgi Boyaci, J.-Y. Han, M. T. Masatcioglu [et al.] // Food Chemistry. – 2012. – Vol. 132, № 4. – P. 2165–2170. https://doi.org/10.1016/j.foodchem.2011.12.013.
  51. Bajaj, S. R. Effect of extrusion processing and hydrocolloids on the stability of added vitamin B12 and physico-functional properties of the fortified puffed extrudates / S. R. Bajaj, R. S. Singhal // LWT – Food Science and Technology. – 2019. – Vol. 101. – P. 32–39. https://doi.org/10.1016/j.lwt.2018.11.011.
  52. Rathod, R. P. Physicochemical properties, protein and starch digestibility of lentil based noodle prepared by using extrusion processing / R. P. Rathod, U. S. Annapure // LWT – Food Science and Technology. – 2017. – Vol. 80. – P. 121–130. https://doi.org/10.1016/j.lwt.2017.02.001.
  53. Effect of extrusion variables (temperature, moisture) on the antinutrient components of cereal brans / S. Kaur, S. Sharma, B. Singh [et al.] // Journal of Food Science and Technology. – 2015. – Vol. 52, № 3. – P. 1670–1676. https://doi.org/10.1007/s13197-013-1118-4.
  54. Yağci, S. Effect of instant controlled pressure drop process on some physicochemical and nutritional properties of snacks produced from chickpea and wheat / S. Yağci, T. Evci // International Journal of Food Science and Technology. – 2015. – Vol. 50, № 8. – P. 1901–1910. https://doi.org/10.1111/ijfs.12843.
  55. Mukhopadhyay, N. Effect of extrusion cooking on anti-nutritional factor tannin in linseed (Linum usitatissimum) meal / N. Mukhopadhyay, S. Sarkar, S. Bandyopadhyay // International Journal of Food Sciences and Nutrition. – 2007. – Vol. 58, № 8. – P. 588–594. https://doi.org/10.1080/09637480701343952.
  56. Nwabueze, T. U. Effect of process variables on trypsin inhibitor activity (TIA), phytic acid and tannin content of extruded African breadfruit-corn-soy mixtures: A response surface analysis / T. U. Nwabueze // LWT – Food Science and Technology. – 2007. – Vol. 40, № 1. – P. 21–29. https://doi.org/10.1016/j.lwt.2005.10.004.
  57. Effects of extrusion variables on corn-mango peel extrudates properties, torque and moisture loss / M. M. Mazlan, R. A. Talib, N. F. Mail [et al.] // International Journal of Food Properties. – 2019. – Vol. 22, № 1. – P. 54–70. https://doi.org/10.1080/10942912.2019.1568458.
  58. Rzedzicki, Z. Influence of pea hulls on the twin screw extrusion-cooking process of cereal mixtures and the physical properties of the extrudate / Z. Rzedzicki, A. Sobota, P. Zarzycki [et al.] // International Agrophysics. – 2004. – Vol. 18, № 1. – P. 73–81.
  59. Preparation, physicochemical and texture properties of texturized rice produce by Improved Extrusion Cooking Technology / C. Liu, Y. Zhang, W. Liu [et al.] // Journal of Cereal Science. – 2011. – Vol. 54, № 3. – P. 473–480. https://doi.org/10.1016/j.jcs.2011.09.001.
  60. O’Shea, N. Enhancing an extruded puffed snack by optimising die head temperature, screw speed and apple pomace inclusion / N. O’Shea, E. Arendt, E. Gallagher // Food and Bioprocess Technology. – 2014. – Vol. 7, № 6. – P. 1767–1782. https://doi.org/10.1007/s11947-013-1181-x.
  61. Factors affecting structural properties and in vitro starch digestibility of extruded starchy foams containing bran / S. A. Alam, J. Järvinen, H. Kokkonen [et al.] // Journal of Cereal Science. – 2016. – Vol. 71. – P. 190–197. https://doi.org/10.1016/j.jcs.2016.08.018.
  62. Water solubility index and water absorption index of extruded product from rice and carrot blend / N. Yousf, F. Nazir, R. Salim // Journal of Pharmacognosy and Phytochemistry. – 2017. – Vol. 6, № 6. – P. 2165–2168.
  63. Yagci, S. Development of extruded snack from food by-products: A response surface analysis / S. Yagci, F. Gögüs // Journal of Food Process Engineering. – 2009. – Vol. 32, № 4. – P. 565–586. https://doi.org/10.1111/j.1745-4530.2007.00232.x.
  64. Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products / Đ. Ačkar, A. Jozinović, J. Babić [et al.] // Innovative Food Science and Emerging Technologies. – 2018. – Vol. 47. – P. 517–524. https://doi.org/10.1016/j.ifset.2018.05.004.
  65. Effect of extrusion conditions on iron stability and physical and textural properties of corn snacks enriched with soybean ferritin / A. Makowska, M. Zielińska-Dawidziak, P. Niedzielski [et al.] // International Journal of Food Science and Technology. – 2018. – Vol. 53, № 2. – P. 296–303. https://doi.org/10.1111/ijfs.13585.
  66. Altan, A. Twin-screw extrusion of barley-grape pomace blends: Extrudate characteristics and determination of optimum processing conditions / A. Altan, K. L. McCarthy, M. Maskan // Journal of Food Engineering. – 2008. – Vol. 89, № 1. – P. 24–32. https://doi.org/10.1016/j.jfoodeng.2008.03.025.
  67. Dehghan-Shoar, Z. The physico-chemical characteristics of extruded snacks enriched with tomato lycopene / Z. Dehghan-Shoar, A. K. Hardacre, C. S. Brennan // Food Chemistry. – 2010. – Vol. 123, № 4. – P. 1117–1122. https://doi.org/10.1016/j.foodchem.2010.05.071.
  68. The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products / V. Stojceska, P. Ainsworth, A. Plunkett [et al.] // Food Chemistry. – 2009. – Vol. 114, № 1. – P. 226–232. https://doi.org/10.1016/j.foodchem.2008.09.043.
  69. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks / Q.-B. Ding, P. Ainsworth, G. Tucker [et al.] // Journal of Food Engineering. – 2005. – Vol. 66, № 3. – P. 283–289. https://doi.org/10.1016/j.jfoodeng.2004.03.019.
  70. Geetha, R. Twin screw extrusion of kodo millet-chickpea blend: process parameter optimization, physico-chemical and functional properties / R. Geetha, H. N. Mishra, P. P. Srivastav // Journal of Food Science and Technology. – 2014. – Vol. 51, № 11. – P. 3144–3153. https://doi.org/10.1007/s13197-012-0850-5.
  71. Grasso, S. Extruded snacks from industrial by-products: A review / S. Grasso // Trends in Food Science and Technology. – 2020. – Vol. 99. – P. 284–294. https://doi.org/10.1016/j.tifs.2020.03.012.
  72. Optimization of the extrusion process for the production of ready-to-eat snack from rice, cassava and kersting’s groundnut composite flours / O. O. Awolu, P. M. Oluwaferanmi, O. I. Fafowora [et al.] // LWT – Food Science and Technology. – 2015. – Vol. 64, № 1. – P. 18–24. https://doi.org/10.1016/j.lwt.2015.05.025.
  73. Effects of addition of carrot dietary fibre on the ripening process of a dry fermented sausage (sobrassada) / V. S. Eim, S. Simal, C. Rosselló [et al.] // Meat Science. – 2008. – Vol. 80, № 2. – P. 173–182. https://doi.org/10.1016/j.meatsci.2007.11.017.
  74. Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement / M. M. Selani, S. G. C. Brazaca, C. T. dos Santos Dias [et al.] // Food Chemistry. – 2014. – Vol. 163. – P. 23–30. https://doi.org/10.1016/j.foodchem.2014.04.076.
  75. Fate of mycotoxins in cereals during extrusion cooking: A review / M. Castells, S. Marín, V. Sanchis [et al.] // Food Additives and Contaminants. – 2005. – Vol. 22, № 2. – P. 150–157. https://doi.org/10.1080/02652030500037969.
  76. Meister, U. Investigations on the change of fumonisin content of maize during hydrothermal treatment of maize. Analysis by means of HPLC methods and ELISA / U. Meister // European Food Research and Technology. – 2001. – Vol. 213, № 3. – P. 187–193. https://doi.org/10.1007/s002170100352.
  77. Loss of fuminosin B1 in extruded and baked corn-based foods with sugars / M. M. Castelo, L. S. Jackson, M. A. Hanna [et al.] // Journal of Food Science. – 2001. – Vol. 66, № 3. – P. 416–421. https://doi.org/10.1111/j.1365-2621.2001.tb16120.x.
  78. Mycotoxins inactivation by extrusion cooking of corn flour / D. Cazzaniga, J. C. Basílico, R. J. González [et al.] // Letters in Applied Microbiology. – 2001. – Vol. 33, № 2. – P. 144–147. https://doi.org/10.1046/j.1472-765X.2001.00968.x.
  79. Reduction of ochratoxin A in extruded barley meal / M. Castells, E. Pardo, A. J. Ramos [et al.] // Journal of Food Protection. – 2006. – Vol. 69, № 5. – P. 1139–1143. https://doi.org/10.4315/0362-028X-69.5.1139.
  80. Schaich, K. M. Free radical generation during extrusion: A critical contributor to texturization / K. M. Schaich // ACS Symposium Series. – 2002. – Vol. 807. – P. 35–48. https://doi.org/10.1021/bk-2002-0807.ch003.
  81. Kabak, B. The fate of mycotoxins during thermal food processing / B. Kabak // Journal of the Science of Food and Agriculture. – 2009. – Vol. 89, № 4. – P. 549–554. https://doi.org/10.1002/jsfa.3491.
  82. The effect of thermal processing on the reduction of deoxynivalenol and zearalenone cereal content / J. Pleadin, J. Babić, A. Vulić [et al.] // Croatian Journal of Food Science and Technology. – 2019. – Vol. 11, № 1. – P. 44–51. https://doi.org/10.17508/cjfst.2019.11.1.06.
  83. Decontamination of mycotoxin-contaminated feedstuffs and compound feed / R. Colović, N. Puvača, F. Cheli [et al.] // Toxins. – 2019. – Vol. 11, № 11. https://doi.org/10.3390/toxins11110617.