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Abstract: 
Lycopene and other carotenoids have a significant added value in the food and cosmetic industries due to their nutraceutical 
properties and antioxidant activity. The extraction and stabilization of these compounds remain challenging due to their 
sensitivity to light, temperature fluctuations, and oxidation. This article introduces a sustainable method of extracting lycopene 
from tomato waste (Solanum lycopersicum L.) using layered double hydroxide nanoparticles to stabilize lycopene. 
We used tomato juice and lycopene as a positive control, while ZnAl was a negative control. The experimental samples included 
75 and 100 mg of zinc salt per 1 mL of tomato juice, which were labeled as ZnAl75J and ZnAl100J. 
Zinc and aluminum salts developed insoluble hydroxides, which precipitated lycopene from tomato juice, thus forming 
composites. The composites proved to be efficient means of encapsulating lycopene as they recovered 97% lycopene present 
in tomato juice. The physicochemical properties of the organic material enhanced resistance to thermal degradation and acted 
as an extended-release antioxidant. ZnAl100J, which contained a lot of lycopene, inhibited 89% of DPPH• in 24 h and showed 
a value higher than IC50 for ABTS•+, which was 0.02 μg/mL of TEAC ABTS•+. ZnAl75J composites showed a higher protection 
against oxidation and a higher sun protection factor value (3.08) at 15% concentration. 
The composites could be used as an active ingredient in a wide range of formulations that require antioxidant and photo- 
sensitizing properties, or simply as encapsulators and carriers of lycopene. 
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INTRODUCTION
Lycopene is a nutraceutical ingredient that helps pre-

vent diseases or minimize their symptoms. As an excel-
lent antioxidant, it is highly demanded in the cosmetic 
industry. Tomatoes, which are cultivated worldwide, are 
extremely rich in lycopene and serve as the main source 
of this valuable substance [1]. Even tomato waste may 
be used as raw material [2, 3]. In fact, tomato waste bio- 
mass can generate lycopene, a high-value-added ingredi- 
ent, to be used as a nutraceutical or cosmetic [4]. Howe- 
ver, isolated lycopene has a major disadvantage: it degra- 
des easily when exposed to light and ambient oxygen.

Our research team has already reported that tomato  
juice can be used as a reaction medium to produce 

layered double hydroxide nanoparticles and a compo- 
site that could serve as a carrier powder for lycopene [5].  
Layered double hydroxide particles are crystalline par-
ticles with a layered structure containing a combina- 
tion of M(II) and M(III) cations coordinated by hy-
droxyl groups. The M(III) cation generates an excess 
charge in the layers that is balanced with interlayer ani- 
ons. As a result, a layered double hydroxide particle rep- 
resents a stacking of layers of metallic hydroxides that 
retain interlayer anions [6, 7]. Considering that various  
elements can form layered double hydroxide, those 
with low toxicity can be selected to design particles to 
be used in food or cosmetics [8]. For instance, we used 
Mg3Al(OH)8(CO3)0.5·XH2O [5]. Zinc and aluminum are 
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also widely studied for layered double hydroxide for-
mulations in pharmacy and cosmetics [9–11]. This vari-
ant is useful for topical applications in cosmetics. In 
this study, we reported an experiment modification of 
crystalline layered double hydroxide formation with 
Zn3Al(OH)8(CO3)0.5·XH2O composition in tomato juice. 
However, our modification resulted in amorphous com-
pounds that possessed the same efficiency in lycopene 
removal and stabilization. 

The research objective was to study the properties 
of the material and determine its application in the food 
industry, food packaging, or cosmetics.

STUDY OBJECTS AND METHODS
We used the coprecipitation technique to synthesize 

the composites. First, we dissolved zinc and aluminum 
salts in 100 mL of tomato juice and alkalinized them 
with NaOH 1 M to reach pH 8.5. After that, we dissol- 
ved sodium carbonate in 20 mL of water and added it to 
the suspension. After stirring the suspension for 2 h at 
room temperature and air atmosphere, we centrifuged 
it at 1380 rpm, washed the red solid with water until 
the washing liquid reached the desired pH, and dried  
at 50°C. Table 1 illustrates the samples and reagents in- 
volved. As a positive control, we used tomato juice and 
lycopene. The ZnAl sample, which contained zinc and 
aluminum cations, was a negative control. ZnAl75J and 
ZnAl100J were the samples with 75 and 100 mg of zinc 
salt used per milliliter of tomato juice. 

To calculate the yield percentage, we used the final 
weight of the dry composites as in Eq. (1):
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where W is the percentage of weight, %; Wf is the final 
weight of the dry composites; and Wo is the expected 
theoretical weight considering the inorganic phase cor-
responded to layered double hydroxide particles.  

The X-ray diffraction profiles were collected from 
100 mg of the sample pressed onto a holder to produce 
a smooth surface. The procedure involved a D8 AD-
VANCE Bruker analytical diffractometer with Cu-Kα 
radiation. The data were collected within the 5–70° 
range in 2-Theta mode with steps of 0.02° and scanned 
at 30 s per step. The X-ray photoelectron spectra were 
obtained in a SPECS spectrometer with an 1D DLD 
detector with a Phoibos 150 analyzer. The device em-
ployed AlKα radiation (1486.7 eV) generated at 250 W 

and 12.5 kV; the spectra were collected at a pressure  
≤ 2.12×10–9 mbar. The charge of operation was adjusted 
at 20 μA of emission and 2 eV. The samples were ap-
plied on glass. The infrared spectra were obtained from 
2 mg of sample with an iS50 ATR Thermo Scientific 
spectrometer. The spectra were collected with 15 scans 
with a resolution of 4 cm–1 at room temperature. The 
scanning electron microscopy analysis involved a JEOL 
JSM 5400 LV microscope. The images were obtained 
using secondary electrons generated with a voltage of 
20 kV. The energy dispersive X-ray spectroscopy maps 
were acquired with an X-Max detector (Oxford Instru-
ments) at 20 mm2, which was assembled to a JEOL JSM- 
6610LV microscope at 15 kV. The dynamic light scat-
tering required 2 mg of each sample added to 2 mL of 
0.9% NaCl solution and 0.1M HCl. The suspensions 
were dispersed with ultrasound for 10 min. The hydro-
dynamic size and the zeta potential were measured with 
a Nano ZS Malvern device. A refractive index of 1.2 
was loaded to the software with 15 readings per sam-
ple. The Discovery thermogravimetric device included 
2 mg of each sample at 25–900°C with steps of 20°C 
per 1 min under a nitrogen flow of 20 mL/min.

Quantification of lycopene content in composi- 
tes. To quantify the amount of lycopene contained in 
the composites, we performed a solvent extraction using  
5 mL toluene per 1 g composite, which was then agita- 
ted for 30 min at 1500 rpm. After that, the samples were 
centrifuged, and the supernatant was read in a Cary 60 
UV-Vis spectrometer (Agilent Technologies) within the 
range of 50–500 nm. The reads were interpolated with a 
calibration curve. 

Antioxidant activity. A stock solution of 2,2-diphe- 
nyl-1-picrylhydrazyl (DPPH•) was prepared as follows.  
A solution of 20 mg of DPPH• in 300 mL of ethanol was 
agitated for 10 min, after which we measured its initial 
absorbance at 517 nm and verified that the read stayed 
below 3.0 absorbance units. Then, we weighed about 
70 mg of the samples in 2 mL Eppendorf tubes and pou- 
red 1 mL DPPH• solution into each tube, leaving the 
samples to incubate for 30 min in the dark [12]. After 
that, we centrifuged the samples to ensure sedimentation 
of the powders and immediately measured the absor-
bance in a Perkin Elmer Lambda EZ 150UV-vis spec-
trometer. To quantify the percentage of the remaining 
DPPH•, we used Eq. (2): 
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Table 1 Samples used to synthesize composites

ZnCl2·6H2O, g AlCl3·6H2O, g Na2CO3, g Medium, 100 mL Final weight expected, g Sample
– – – Tomato juice 3.86 Tomato juice
5.25 3.10 1.59 Water 5.00 ZnAl
– – – – 0.50 Lycopene
7.88 4.65 2.39 Tomato juice 11.36 ZnAl75J
10.50 6.20 3.19 Tomato juice 13.86 ZnAl100J
0.53 0.31 0.16 Lycopene 1.00 ZnAlLyc
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where Af is the stands for the final absorbance of each 
sample; and Ai is the corresponds to the initial absor-
bance of DPPH•.

We assessed the antioxidant kinetics with DPPH• by 
placing 50 mg of particles in 20 mL tubes, which had 
been protected from light with aluminum foil. In this 
experiment, the stock solution was diluted to set the ab-
sorbance at 0.8 units. After that, we added 10 mL of the 
DPPH• diluted solution to each tube and agitated them. 
The UV-Vis measurements were carried out in 0, 5, 15, 
30, 60, 90, 90, 123, 180, 240, 360, and 1440 min in trip-
licate. With the values obtained, the percentage of inhibi- 
ted DPPH• in the solution was calculated as follows: 
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where Ao is the initial absorbance of DPPH• without an-
tioxidant added and As is the absorbance of the sample.

A solution of ABTS•+ (2,2’-azino-di-3-ethyl-benzthi- 
azoline sulphonate) in ethanol was prepared with an 
absorbance of 0.740 ± 0.050 at a wavelength of 732 nm. 
Separately, we weighed 10.0 ± 0.5 mg of each sample in 
Eppendorf tubes in triplicate. Then, we added 1 mL of 
ABTS•+ solution to each sample and left for incubation 
for 5 min to take time readings in triplicate at a wave-
length of 732 nm. The inhibition of ABTS•+ was calcu-
lated according to Eq. (4): 
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where Ao is the initial absorbance of the ABTS•+ solution 
(0.740 ± 0.050) and As is the absorbance of the sample.

Antioxidant capacity on copper (CUPRAC me- 
thod). This experiment involved three solutions: 
NH4(CH3COO) buffer (pH = 7.1), CuCl2 (10 mM), and 
neocuproine (7.5 mM in ethanol). In this order, 0.33 mL 
of each solution was added to each vial; the samples 
were shaken and left for incubation in the dark for 
30 min. After that, the liquid part was extracted and 
read using the UV-Vis spectrometer at 450 nm. Each 
test was done in triplicate. 

RapidOxy oxidation stability test. The RapidOxy 
assay was conducted with 0.01, 0.03, and 0.05 g of each 
sample added to 1 mL of purified linseed oil. After ho-
mogenization, we placed the mix in Teflon capsules in- 
side a PetrOXY 13-3006 device to measure the induc-
tion period and the oxidation stability until reaching  
∆PO2 = 50%. The oxygen consumption, mol, was calcu-
lated using Eq. (5):

( )f

o

 1 00
W = 

W
W
×  

f

i

% DPPH  1 00A
A

= ×  

 
o s

o

( )% inhibition DPPH  1 00A A
A
−

= ×  

 
o s

o

( )% inhibition ABTS  1 00A A
A

+ −
= ×  

 
( ) ( )2 2 2max  t P O  P O  V(O )

Oxygen Consumption 
  R T

 − =  

 
( ) ( ) ( )

320

290

Solar protection factor   CF EE I ABSλ λ λ= ∑  

  (5)

where P(O2)max is the maximal pressure of O2 inside the 
equipment chamber; P(O2)t represents the pressure of O2 
upon reaching ∆P of 50%; V(O2) is the volume of O2 con-
tained inside the equipment chamber; R corresponds to 

the universal constant of perfect gases (8.314 J/(K·mol);  
and T is the temperature of the system at P(O2)t.

Evaluating the solar protection factor. This part of 
the experiment required a neutral moisturizing cream,  
1 mL of which was placed in a test tube followed by 
three different particle concentrations: 5, 10, and 15%. 
This mix was centrifuged at 13 000 rpm for 3 min using 
an IKA T18 digital Ultra Turrax homogenizer.

The solar protection factor was measured using a 
Cary 60 UV-Vis device (Agilent Technologies) within the  
range of 290–320 nm. According to the prescribed pro-
cedure, 2 mg/cm2 of the mix was weighed on a 1×2 cm 
quartz plate and dispersed, leaving a homogeneous layer. 
This layer was placed in the UV-Vis device to take the 
corresponding readings. 

The absorbance readings made it possible to calcu-
late the solar protection factor value: 
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where CF is the correction factor of 10, EE(λ) is the ery- 
thema effect spectrum, I (λ) defines the solar intensity 
spectrum, and ABS(λ) stands for the absorbance of the 
sample. The experiment was performed in triplicate.

RESULTS AND DISCUSSION
Figure 1 presents yields of the products and their re-

lationship with their theoretical yield, considering that 
all the organic matter from the tomato juice was remo- 
ved by the idealized layered double hydroxide of ZnAl  
(Table 1). The lyophilized tomato juice produced 3.86 g  
of powder, considered as 100% of the organic mat-
ter. The reference ZnAl had a yield of 60.5%, which is 
common when the synthesis is conducted at pH 8.5, ac-
cording to our personal observations. The composites, 
ZnAl75J and ZnAlLyc, had a yield of 50.67 and 50.30%, 
respectively. ZnAl100J had the highest yield (72.84%), 
indicating that the yield was proportional to the amount 
of the salts added. Another cause of the low yield was 

Figure 1 Solid yield obtained considering the mass of the 
tomato juice and the total formation of the ideal layered double 
hydroxide of ZnAl. TJ is tomato juice
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that the expected layered double hydroxide structure 
was not obtained (see the X-ray diffraction section). 

Figure 2 shows the infrared spectra of the compo- 
sites and their respective references, i.e., tomato juice 
and lycopene. They exhibited bands between 3090 and 
2800 cm–1, which is typical of lycopene methyl groups. 
The band at 3400 cm–1 was attributed to the stretching 
of O-H hydroxyl bonds while the band at 994 cm–1 corre-
sponded to C-H vibrations, and the band at 820 cm–1 was 
related to lycopene vinyl bonds (R2-C=C-R) [13, 14].

Regarding the composites ZnAl75J and ZnAl100J, 
the weak band at 1630 cm–1 could be attributed to the wa-
ter (H2O) bending vibration. The band at 1027 cm–1 cor- 
responded to C-O stretching, and the bands at 550 cm–1 

were attributed to the M-O groups, corresponding to 
Al-O or Zn-O. Another phenomenon was registered in 
the region around 1460 cm–1 and manifested itself as an 
increase in the signal of methyl groups combined with 
the carbonyl signal [15]. This information suggested the 
possible presence of lycopene in both composites.

The band at around 1365 cm–1 could be attributed 
to the asymmetric stretching mode of the carbonate, as 
confirmed by the bands at 870 and 680 cm–1, which cor-

responded to weak bending and angular bending modes 
of the carbonate, respectively [16, 17]. In the ZnAl spec-
trum, we observed signals related to O-H stretching at 
3440, 3330, and 3144 cm–1, which were probably associ-
ated with water or metallic hydroxides [18]. 

The diffractograms of all the products showed broad 
signals (Fig. 3), indicating that the structure of the ZnAl 
reference and the composites were predominantly amor-
phous. A weak but clear signal was recorded at 14.4°, 
which coincided with the most intense signal of boeh-
mite, i.e., AlO(OH), as described in the International  
Centre for Diffraction Data, 83 by 1505. Although this 
weak signal was the only evidence of crystalline parti-
cles, other zinc and aluminum compounds might have 
been formed in an amorphous phase. We performed an 
elemental analysis by energy-dispersive X-ray spectros-
copy to identify them. The spectra revealed the pres-
ence of Zn, Al, C, and O in the sample, consistent with 
the presence of boehmite as confirmed by X-ray dif-
fraction, carbonates in agreement with the IR spectrum, 
and zinc, probably amorphous. The composites ZnAl75J 
and ZnAl100J rendered the same results, indicating 
the presence of presumably amorphous zinc. Other ele- 
ments detected were C, O, P, Na, and Cl, which corre-
sponded to the elements from the tomato juice. In all 
cases, the elements were uniformly distributed throu- 
ghout the matrix, as indicated by the energy-dispersive 
X-ray spectroscopy maps (Fig. 4). The formation of ZnAl 
layered double hydroxide was affected by the initial re-
agents, pH, and even temperature, as reported in [19].  
Unlike our previous work, here we started with chloride 
salts instead of nitrate, with the aim of using reagents 
authorized for the food and cosmetics industry. Altho- 
ugh the composites were amorphous, they were even 
better at developing fine powders which could be easily 
dispersed in the sun protection factor assays. The X-ray 
photoelectron spectra (Fig. 5) provided detailed infor-
mation about the spectra of the Zn2p levels, indicating 
the presence of two types of zinc atoms in the ZnAl 
reference and the composites. One signal at 1020.9  eV 
and another at 1026.0 eV, both with a spin-splitting of 

                                                 a                                                                                                             b

Figure 2 Infrared spectra of: the composites (a) and tomato juice and lycopene (b)
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Figure 3 X-ray diffraction pattern of composites synthesized 
using tomato juice as reaction medium
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23.1 eV, corresponded to Zn2+, commonly found in ZnO 
and Zn(OH)2 [20]. The signal at 1020.9 eV is typical of 
crystalline or amorphous ZnO [21, 22]. The signal at 
1026.0 eV has not been reported in scientific literature. 
However, it was close to high values in salts with highly  
electronegative counterions, e.g., halides and sulfates, 
suggesting that Zn2+ may be attributed to anions present 
in tomato juice [23]. On the other hand, the Al2p spec-
trum of the ZnAl reference contained a signal at 73.3 eV, 
which is characteristic of aluminum oxides or hydro- 
xides [23]. The composites also demonstrated a shift 
to 74.2 eV, consistent with the spectrum reported for 
aluminum hydroxide, which supported the X-ray dif-
fraction data [24]. ZnAl100J exhibited an additional sig- 
nal at 78.5 eV. Although it was not registered in data-
bases, it approached the binding energy reported for Al  

with halides hydroxides, suggesting coordination with  
such highly negatively charged anions as Cl [23]. The- 
refore, the powders consisted of organic compounds 
from tomato pulp and amorphous zinc, aluminum oxi- 
des, or hydroxides.

The scanning electron micrographs of all the compo- 
sites (Fig. 6) demonstrated ZnAl, ZnAl75J, and ZnAl100J  
with a rough surface and multiple cavities. Additionally,  
a more spherical morphology was present in clusters 
with smooth surfaces. The absence of defined crystal-
line structures could be indicative of a higher amount 
of organic or amorphous material, as detected by the 
X-ray diffraction. ZnAlLyc demonstrated different struc-
tures in the form of layers corresponding to aluminum 
hydroxides [25, 26]. In all cases, particles tended to be 
spherical in ZnAl, ZnAl75J, and ZnAl100J, while ZnAl-

                                          Zn2p                                                                                                           Al2p

Figure 5 X-ray photoelectron spectra of Zn2p and Al2p in composites vs. ZnAl reference
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Quantification of lycopene. The quantification was 
possible due to the easy release of lycopene from the 
composites (Fig. 8a) because adsorption forces between 
the metal-organic composition in these composites were 
not strong enough to prevent organic solvents from re-
moving lycopene with simple agitation. Figure 8a shows 
the red phase containing lycopene. The identification 
was done by comparing the UV-Vis absorption profile 
of the red pigment released by the samples with a stan-
dard lycopene solution (Fig. 8b), with peaks at 454, 484, 
and 515 nm [28]. The easy release may suggest that the 
nanoparticles somehow broke the pericarp and chromo-
plasts to let the lycopene out.

Lyc formed needle-like structures. All particles were 
400–800 nm in size; however, the particle size in the li- 
quid medium was different (see the dynamic light scat-
tering section).

Thermogravimetric analysis. Figure 7 illustrates 
the decomposition of the composites as a function of 
temperature. Regarding ZnAlLyc, the degradation was 
continuous with the first step at 250°C and the second at 
450°C. The first event might correspond to the removal 
of water and the burning of organic matter whereas the 
second event might correspond to the decomposition of 
metal hydroxides, possibly producing oxides at ≥ 500°C. 
The 50% of compounds that did not degrade could be 
metallic oxides of amorphous nature as they were not 
observed in the X-ray diffraction analysis.

ZnAl75J and ZnAl100J revealed a step that culmi-
nated at 150°C due to evaporation of approximately 5% 
water [26, 27]. That step was followed by another event 
ending at 200°C, which probably corresponded to the 
combustion of organic material and partial dihydroxy- 
lation. The third step was at 330–750°C, where the com-
bustion of organic matter and the formation of metal  
oxides were completed [27].

Comparing the degradation profile with our previous 
composites with layered double hydroxide phases, this 
profile formed a lower slope, which indicated a slower de- 
gradation [5]. In addition, the amorphous phases in the 
current work provided a slightly greater thermal stability.  

Figure 7 Thermogravimetric analysis for composites ZnAl75J, 
ZnAl100J, and ZnAlLyc

0           200         400         600        800 

W
ei

gh
t, 

%

Temperature, °C

100

90

80

70

60

50

40

30

                         a                                                   b                                                   c                                                  d

Figure 6 Micrographs obtained by scanning electron microscopy: (a) ZnAl, (b) ZnAlLyc, (c) ZnAl75J, and (d) ZnAl100J
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that the ZnAl particles maintained the positive potential 
in HCl and saline solution while the composites with 
tomato juice changed the values to negative when they 
were in saline solution. The positive values in HCl sug-
gested that H+ ions were adsorbed on the surface of the 
composites while Cl– ions were retained in saline solu-
tions. Stable suspension preparation often requires high 
values of the zeta potential, e.g., ≥ ± 30 mV [31]. Howe- 
ver, the low aggregation detected by the dynamic light 
scattering indicated that these types of composites were 
easily dispersible in liquid formulations.

Antioxidant capacity. Figure 12 presents the results 
of total antioxidant capacity expressed as a percentage 
of DPPH· inhibition in 2 and 24  h. In 2 h, the inhibi-
tion was 31% for ZnAl75J and ZnAl100J. ZnAl showed 
18% inhibition, which seemed to have a significant con-
tribution from the inorganic particles. In ZnAlLyc, the 
inhibition slightly increased to 42% whereas the tomato 
juice and lycopene references showed superior activity 
of ≥ 90%. This phenomenon indicated that the antiox-
idant components in tomato juice and lycopene were 
more available in 2 h than those in all the composites. 
However, the activity of the tomato juice and lycopene 

Using the quantified lycopene in tomato juice as a 
reference, we compared it with the lycopene released 
from the composites to determine recoveries per volume 
of tomato juice and yield. The ZnAl100J composite reco- 
vered 0.717 mg per 1 mL of tomato juice (Fig. 9a), and 
this amount corresponded to the yield of 95.92% (Fig. 9b).  
This value exceeded the highest values reported in [29, 
30], which ranged between 0.43 and 0.50 mg/mL of to-
mato juice. ZnAl75J recovered only 26.6% of the ly-
copene, suggesting that the synthesis conditions of 
ZnAl100J require additional research.

Hydrodynamic particle size. We used a liquid me-
dium to study the particle size of the composites because 
liquid is a more representative environment for their use, 
e.g., in foods or cosmetics. The hydrodynamic size de-
tected by the dynamic light scattering test (Fig. 10) for 
ZnAl75J was 615 nm while that for ZnAl100J it was 
1720 nm. Comparing these results with the scanning elec- 
tron micrographs, ZnAl75J particles were completely 
dispersed in water. However, the aggregation was two 
particles on average for ZnAl100J.

Regarding the zeta potential, the composites were 
subjected to acidic and saline media. Figure 11 shows 

Figure 11 Zeta potential for composites in acidic (green)  
and saline (purple) media. TJ is tomato juice
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references slightly decreased in 24 h while all compo- 
sites and the ZnAl reference increased their activity. 
ZnAl75J reached 52% inhibition, ZnAl100J reached 
64%, and ZnAlLyc reached 82%. Probably, the inorga- 
nic particles were the ones contributing to the long-term 
inhibition, presumably because the Zn and Al oxides/
hydroxides slowed down the release of lycopene into 
the reaction medium. 

Antioxidant kinetics with DPPH·. Figure 13 illustra- 
tes the kinetics of antioxidant activity. Tomato juice re-
tained 6.6% of the remaining DPPH• 5 min after the 
start of the experiment. Due to the fast decay it was not  
plotted. Using this data as a reference point, we ob-
served that the consumption of DPPH• decreased rapidly: 
ZnAl100J consumed 89% of DPPH• in 23 h (remaining 
11%) while ZnAl75J consumed 80% of DPPH• in 30  h 
(remaining 20%). Probably, the higher lycopene removal  
efficiency observed for ZnAl100J indicated that lycopene  
allowed for greater antioxidant activity in this assay. 

In the ABTS•+ assay, the composites demonstrated a 
value of IC50 0.012 μg/mL of ABTS with trolox equiva- 
lent antioxidant capacity. All the samples obtained a va- 
lue higher than that after 5 min of incubation (Fig. 14), 
indicating a greater antioxidant activity towards ABTS•+  
than towards DPPH•. This result could be explained by 

the type and number of charges. In ABTS•+, the SO3
– 

group had a negative charge. Most likely, this anion was 
attracted to the charges of zinc or aluminum, just as it 
happened with the chlorides that shifted the zeta poten-
tial to negative values.

In the RapidOxy experiment, the results represented 
the time required to consume 0.4 mol of O2, correspon- 
ding to ΔP = 50%.

We used purified linseed oil as the oily medium refe- 
rence in this experiment, which needed 555 min for oxi- 
dation. In this experiment, the concentration of linseed 
oil was 0.03 g/mL. Figure 15 shows that ZnAl75J and 
lycopene had the longest time of O2 consumption with 
1089 and 1057 min, respectively, which means they pro-
vided stronger protection against oxidation. On the other  
hand, ZnAl100J consumed oxygen faster than tomato 
juice, taking 287 min. Thus, the protection time was re- 
duced in spite of the fact that this assay had more orga- 
nic material.

As for the sun protection factor, the values presen- 
ted in Fig. 16 indicated that ZnAl75J at 15% (SPF 3.08) 
was the mix with the highest value, followed by ZnAl at 
15% (SPF 2.58) and ZnAl100J at 5% (SPF 2.5). There-
fore, no high photoprotective synergy occurred between 
the Zn compounds and the organic material.

Figure 15 Time to consume ΔPO2 = 50% of composites  
and their references at 37°C and 101 KPa. TJ is tomato juice
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The sun protection factor values of ZnAl75J and 
ZnAl100J stayed within the range reported for these 
compounds [32–34]. Similarly, the sun protection factor 
of 1 obtained with ZnAl was lower than the values re-
ported for ZnO in [35] as approximately 5 SPF.

Previous studies showed that human skin incre- 
ases the quantity of carotenoids by approximately 25% 
during summer and autumn [36]. These composites 
could then be an alternative to meet the increased need 
for carotenoids in the skin when applied topically. Cor-
responding with the obtained zeta potential values, these 
composites show stability in oil-in-water emulsions [37].

CONCLUSION
The synthesized composites were found to be amor-

phous, indicating that the reaction did not produce lay-
ered double hydroxide crystals when the synthesis was 
carried out using zinc and aluminum chlorides with 
tomato juice as a reaction medium. The powdered ma-
terial was composed of amorphous zinc and alumi-
num oxides or hydroxides, which removed 97% of the 
available lycopene in tomato juice under the synthesis 
conditions of ZnAl100J. Although ZnAl75J removed a 
smaller amount of lycopene, its antioxidant activity and 
sun protection factor were sufficient for it to be used as 
an antioxidant ingredient in food, food packaging, or 
cosmetics. In addition, its lack of aggregation in water 
allows for uniform dispersion.

ZnAl100J showed higher antioxidant activity against 
free radicals while ZnAl75J exhibited the best results 
for oxidation resistance.

Regarding the sun protection factor, the composites 
showed no high values; however, they could be consi- 
dered as substitutes for increasing carotenoids in human 

skin. Finally, these composites seem to be a promising 
option for sustainable extraction of lycopene, as well as 
for encapsulating organic material obtained from toma-
to juice because they provided protection against degra-
dation and antioxidant loss.
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