Б.А. Баженова, О.А. Балыкина, М.Б. Данилов, О.М. Литвякова

КАЧЕСТВО ВАРЕНОЙ КОЛБАСЫ С СЕЛЕНИРОВАННОЙ МУКОЙ

В статье рассмотрены вопросы применения белково-жировой эмульсии с селенированной мукой в технологии производства вареной колбасы из конины. Изучены качественные показатели вареной колбасы с белково-жировой эмульсией, содержащей селенированную биотехнологическим способом пшеничную муку. Выявлено, что использование белково-жировой эмульсии способствует повышению качества готового продукта, а также улучшению его пищевой ценности.

Селен, вареная колбаса, качество, органолептические показатели, выход, селенированная мука, конина.

Ввеление

Одним из перспективных направлений пищевой промышленности является создание технологий мясопродуктов функционального назначения, которые сохраняют и улучшают здоровье человека и снижают риск развития заболеваний благодаря наличию в их составе функциональных ингредиентов.

Известно, что химический состав продуктов животноводства во многом определяется составом корма и природно-географическими особенностями региона. Эти факторы в большой степени оказывают влияние на микроэлементный состав пищевых сырьевых ресурсов. Так, Забайкальский край, Республика Бурятия, Якутия относятся к высокоэндемическим по селену регионам. Селен является эссенциальным микроэлементом, входит в состав таких ферментов, как глутатионпероксидаза, формиатдегидрогеназа, пероксидаза и др. [1]. Спектр его действия в организме довольно широк, он выполняет каталитическую, структурную и регуляторную функции, участвует в окислительно-восстановительных процессах, обмене жиров, белков и углеводов. Согласно данным эпидемиологических исследований более 80 % населения России обеспечены селеном ниже оптимального уровня. В этой связи, учитывая широкий спектр действия селена на организм человека, представляется актуальной разработка технологий мясопродуктов из конины, обогащенных селеном.

Целью работы явилось исследование качества вареных колбас из конины с белково-жировой эмульсией, содержащей селенированную муку.

Материалы и методы

Анализ различных способов и приемов обогащения пищевых продуктов селеном показал, что одним из рациональных способов обогащения мясопродуктов может быть создание селенсодержащих белково-жировых эмульсий (БЖЭ), которые широко применяются в технологии фаршевых изделий. Рецептуры БЖЭ наряду с жировой и белковой составляющей могут включать и полисахариды. Мы обратили внимание на возможность создания БЖЭ с использованием пшеничной муки, селенированной биотехнологическим способом, где элемент присутствует в виде биодоступного селен-метионина (Se-Met). Белки и углеводы муки, как известно, имеют высокие пищевые характеристики, а также

положительно влияют на функционально-технологические свойства фаршевых систем.

Так, для увеличения объемов колбасного производства, повышения, сохранения и стабилизации качества продукта наряду с основным сырьем применяют и белковые добавки, по своим функциональным свойствам приближающиеся к мышечным белкам.

В наших экспериментах белковая часть белковожировой эмульсии представлена соевым белковым изолятом, сухим обезжиренным молоком, жировая часть — растительным маслом, а также в состав эмульсии включена полисахаридсодержащая составляющая — это селенированная мука.

Разработку рецептур эмульсий осуществляли методом моделирования большого количества возможных комбинаций сырьевых компонентов: селенированная мука, соевый пищевой белок, сухое молоко, растительное нерафинированное масло. Состав эмульсии был оптимизирован методом линейного программирования.

Объектами исследований при выполнении работы являлись модельные образцы вареной колбасы из конины с внесением белково-жировой эмульсии в количестве 5, 10, 15 и 20 %, в состав которой входила пшеничная мука высшего сорта по ГОСТ (контроль) и селенированная биотехнологическим методом пшеничная мука (опыт). Селенированную муку с крупностью помола не более 5 % получали из проросших зерен пшеницы. Характеристика селенированной муки представлена в табл. 1. Принятые дозы белково-жировой эмульсии были обусловлены как технологическими рекомендациями по использованию эмульсий, так и физиологически допустимыми дозами селена в продуктах питания. Так, с учетом содержания микроэлемента в селенированной муке количество селена в 100 г фарша составило в зависимости от дозы внесения белково-жировой эмульсии от 32 до 127 мкг селена.

Таблица 1 Характеристика селенированной муки

Наименование показателей	Характеристика
Цвет	От светло-желтого до желтого. Не допускаются тона зеленова-
	тые и темные, обусловленные
	плесенью

Запах	Солодовый. Не допускаются:	
	кислый, запах плесени и др.	
Вкус	Солодовый, сладковатый. Не	
	допускается посторонний	
	привкус	
Массовые доли, %:		
- влаги, не более	5,5±0,8	
- крахмала	54,0±1,3	
- caxapa	7,5±0,5	
- белка	15,3±1,1	
- жира	0,8±0,07	
- 30ЛЫ	2,1±0,08	
- клетчатки	1,8±0,02	
- селена, мкг/г СВ	67,2±1,2	
Степень растворения, %	39,2±2,1	
Влажность, %	5,0±1,0	

Исследования химического состава, качественных показателей, органолептических свойств и выхода готовой продукции проводили по методикам, описанным в [2].

Результаты и их обсуждение

Использование белково-жировых эмульсий оказывает существенное влияние на водосвязывающую

(ВСС) и водоудерживающую (ВУС) способности фарша (рис. 1и 2).

Из рис. видно, что ВСС фарша как в контрольном, так и в опытном образцах повышается, что прежде всего связано с функциональными свойствами белкового компонента БЖЭ. Известно, что соевый изолят стабилизирует мясную эмульсию, повышает уровень жиропоглощающей и водосвязывающей способностей. Установлено, что увеличение дозы БЖЭ приводит к повышению водосвязывающей способности фарша. Вместе с тем выявлено, что при одинаковом количестве соевого изолята ВСС опытных образцов фарша во всех принятых дозах БЖЭ несколько меньше, чем в контрольных. Вероятно, это связано с меньшим количеством крахмала в селенированной муке (54,0 %), чем в обычной (61,0 %), что обусловлено расходом крахмала при предварительном проращивании пшеницы.

При изучении влияния вида и дозы БЖЭ на водоудерживающую способность фарша установили, что исследуемый показатель в опытных образцах фарша превышает таковые в контроле (см. рис. 2). Считаем, что выявленные различия в исследуемом показателе обусловлены высвобождением β-глюкана из стенок клеток эндосперма в процессе проращивания пшеницы. Отсюда следует думать, что высокомолекулярный β-глюкан при термической обработке опытного образца фарша выступает дополнительным фактором гелеобразования, который, компенсируя уменьшение доли крахмала в селенированной муке, способствует повышению функциональных свойств БЖЭ.

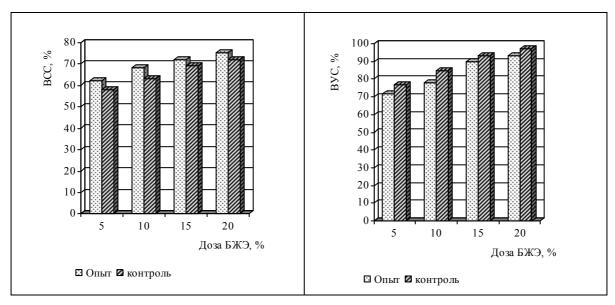


Рис. 1. Изменение водосвязывающей способности фарша вареных колбас

Рис. 2. Изменение водоудерживающей способности фарша вареных колбас

Известно, что БЖЭ увеличивают выход и повышают качество вареных колбас. Исследования влияния разных видов и доз БЖЭ на выход колбасы из конины представлены в табл. 2.

Влияние вида и дозы БЖЭ на выход колбасы из конины

Таблица 2

Количество	Колбаса с БЖЭ	Колбаса с БЖЭ с
БЖЭ, %	с пшеничной му-	селенированной
	кой (контроль), %	мукой (опыт), %
0	109,9±0,99	110,5±0,87
5	121,6±0,91	122,3±0,56
10	124,3±1,07	125,1±1,04
15	126,5±0,55	127,6±0,68
20	128,8±0,62	129,7±0,85

Данные таблицы показывают, что с внесением белково-жировых эмульсий выход вареных колбас увеличивается. Установлено, что увеличение дозы БЖЭ повышает выход готового продукта. Из таблицы видно, что выход контрольных и опытных образцов колбасы не имеет существенных различий. Так, при добавлении 20 % БЖЭ выход контрольных и опытных образцов вареной колбасы увеличивается на 12–19 %. Увеличение выхода готового продукта, как показывают данные таблицы, обусловлено не только заменой основого сырья на БЖЭ, но и повышением функционально-технологических свойства фарша.

Функционально-технологические свойства фарша, с одной стороны, тесно связаны с его химическим составом, структурой и физико-химическими показателями, а с другой — взаимодействием белка, жира и влаги, которое характеризуется значениями их соотношений. В табл. 3 представлены соотношения основных компонентов вареной колбасы из конины с внесением белково-жировой эмульсии, обогащенной селеном.

Соотношение основных компонентов фарша

Таблица 3

Доза внесения БЖЭ, %	Влага: белок	Влага : жир	Жир : белок
0	4,41±0,095	4,17±0,051	1,05±0,010
5	4,55±0,093	4,11±0,015	1,10±0,018
10	4,77±0,058	3,95±0,031	1,20±0,019
15	5,14±0,029	3,89±0,038	1,32±0,007
20	5,32±0,086	3,81±0,013	1,39±0,016

С точки зрения рационального использования сырья, повышения выхода и обеспечения качества продукта оптимальными считаются значения соотношений «жир: белок» от 1 до 3, «влага: белок» и «влага: жир» должны стремиться к пяти [3]. Анализ данных, представленных в таблице, показывает, что наиболее оптимальным будет применение белковожировой эмульсии в количестве 10–15 %.

Результаты изучения влияния вида и дозы БЖЭ на органолептические показатели вареных колбас представлены на рис. 3 и 4.

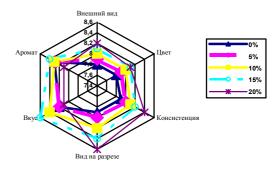


Рис. 3. Органолептические показатели вареной колбасы из конины с БЖЭ с пшеничной мукой

Рис. 4. Органолептические показатели вареной колбасы из конины с БЖЭ с селенированной пшеничной мукой

Данные профилограммы, представленной на рис. 3, показывают, что органолептические показатели вареных колбас из конины с добавлением белково-жировой эмульсии с пшеничной мукой повышаются. Так, при добавлении БЖЭ в количестве 5, 10 и 15 % цвет на разрезе колбас изменяется от розового до светло-розового в зависимости от дозы БЖЭ. Однако при увеличении дозы БЖЭ до 20 % цвет становится бледно-розовым и нестабильным.

При увеличении дозы БЖЭ изменяется и вид колбасы на разрезе: консистенция становится однородной и упругой по сравнению с образцом без добавления БЖЭ, который имеет жестковатую, не сочную и неоднородную консистенцию. Следует отметить, что добавление БЖЭ способствует формированию в продукте нежной консистенции, сочности. При увеличении дозы БЖЭ до 20 % количество баллов, оценивающих вкус продукта, уменьшается на 6 % по сравнению со вкусом колбасы при добавлении 15 % БЖЭ, так как эмульсия добавляется взамен мясного сырья.

Исследования органолептических показателей вареной колбасы с селенированной пшеничной мукой (см. рис. 4) показали, что характер изменения ее органолептических характеристик аналогичен динамике их изменений в колбасе с белково-жировой эмульсией, содержащей пшеничную муку (см. рис. 3). Из рисунка видно, что использование в составе белково-

жировой эмульсии селенированной муки не ухудшает органолептические характеристики мясного продукта. Кроме того, с учетом содержания микроэлемента в селенированной муке фарш обогащается биодоступным селеном, содержание которого в 100 г вареной колбасы в зависимости от дозы БЖЭ состав-

ляет 27,5–110,2 мкг и удовлетворяет потребность организма человека в селене на 30–50 %.

Далее исследовали физико-химические показатели вареной колбасы из конины с внесением оптимальной дозы 15 % БЖЭ с пшеничной мукой и 15 % БЖЭ с пшеничной кукой (табл. 4).

Таблица 4

Физико-химические показатели вареной колбасы «Конская» с внесением 15 % белково-жировой эмульсии с селенированной мукой

	Характеристика			
Наименование показателя	Вареная колбаса Вареная колбаса «Коно «Конская» с БЖЭ с селенированной мук			
Органолептические показатели				
Внешний вид	Батоны с чистой сухой поверхностью			
Консистенция	Упругая			
Цвет и вид фарша на разрезе	Розовый, некрошливый			
Физико-химические показатели				
Массовая доля влаги, %	69,8	70,6		
Массовая доля соли, %	2,1	2,2		
Массовая доля нитрита натрия, мг	0,002	0,002		
Содержание селена, мкг %	_	82,6		

Из таблицы видно, что внесение БЖЭ в количестве 15 % в продукт обусловливает высокие органолептические свойства как контрольным, так и опытным образцам, а их физико-химические показатели соответствуют нормативным данным.

Таким образом, использование селенированной пшеничной муки в составе белково-жировой эмульсии для производства колбасы вареной из конины позволяет увеличить выход и улучшить потребительские свойства продукта, содержащего селен в биодоступной форме.

Список литературы

- 1. Тутельян, В.А. Селен в организме человека: метаболизм, антиоксидантные свойства, роль в канцерогенезе / В.А. Тутельян и др. M.: Изд-во РАМН, 2002. 224 с.
- 2. Антипова, Л.В. Методы исследования мяса и мясопродуктов / Л.В. Антипова, И.А. Глотова, И.А. Рогов. М.: Колос, 2001.-376 с.
- 3. Жаринов, А.И. Основы современных технологий переработки мяса. Ч. 1: Эмульгированные и грубоизмельченные мясопродукты. М.: ИТАР-ТАСС, 1994. 154 с.
- 4. Химический состав пищевых продуктов: справочник. Кн. 1 / под ред. И.М. Скурихина и М.Н. Волгарева. М.: Агропромиздат, 1987. 224 с.

ГОУ ВПО «Восточно-Сибирский государственный технологический университет», 670013, Россия, г. Улан-Удэ, ул. Ключевская, 40в. Тел./факс: (3012) 43-14-15 e-mail: office@esstu.ru

SUMMARY

B.A. Bazhenova, O.A. Balykina, M.B. Danilov, O.M. Litvyakova

Quality of boiled sausage with selenium fortified flour

The article deals with the application of a protein-fatty emulsion with selenium fortified flour in the technology of boiled sausage from horseflesh. Quality indices of boiled sausage with the protein-fatty emulsion containing wheat flour biotechnologically fortified with selenium have been studied. It has been revealed that the use of a protein-fatty emulsion promotes the improvement of finished product quality and its food value.

Selenium, boiled sausage, quality, organoleptical indices, yield, selenium fortified flour, horseflesh.

The East-Siberia State University of Technology 40v, Kluchevskay street, Ulan-Ude, 670013, Russia Phone/Fax: +7(3012) 43-14-15

e-mail: office@esstu.ru