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Abstract.

Bacterial cellulose differs from plant cellulose: its unique properties include a strong crystalline nanostructure and a high
degree of polymerization. In addition, it is more pure than traditional cellulose as it contains neither lignin nor hemicellulose.
These qualities make it a promising alternative to plant cellulose in several industries. Bacterial cellulose with the specific
physicochemical profile can be obtained only if the metabolizing properties of its producer have been considered. This article
describes the effect of nutrient medium compositions with different carbon sources, vitamins, mineral salts, and acids on the
yield and properties of bacterial cellulose.

Acetic acid bacteria Acetobacterium xylinum B-12429 were cultivated statically at 28°C for 72 h on the Hestrin-Schramm
medium with varying carbon sources and growth factors.

The highest biomass yield (4.4 g/L) was obtained on cultivation day 10 in the sample with 20.0 g/L fructose. Glucose provided
a lower productivity of 3.6 g/L. The bacterial cellulose yield also proved to depend on the concentration of the main carbon
source: it was at its maximum at 10%. Adding ascorbic acid and MgSO, also catalyzed the biosynthesis. The structural profile
was studied using infrared spectroscopy and scanning electron microscopy. It included such physicochemical properties as
water-holding capacity and crystallinity indices /, and /,. The biofilms produced from the media fortified with xylose and
sorbitol demonstrated excellent water-holding capacity; all the samples demonstrated a stable crystalline structure regardless
of the carbon source.

The composition of the nutrient media had a significant effect on the yield and quality of biosynthesis. An optimized nutrient
composition was able to boost biosynthesis, making the method applicable to industrial scales of high-quality bacterial cel-
lulose production.
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AHHOTAIMA.

BakrepunanpHas nemIrono3a ooyafaeT cnenu(pUIecKUMA U YHUKAJIBHBIMU CBOMCTBAaMH, KOTOPHIE OTIMYAIOT €€ OT PaCTUTENBHOM.
OHa uMeeT BBICOKOKPUCTAUINYECKYI0O HAHOCTPYKTYPY, BEICOKYIO YUCTOTY (OTCYTCTBHE JIMTHUHA ¥ T€MHUIIEIUIION03EI) U Oolee
BEICOKYIO CTEIICHBb MOJMMEPH3AINH, YTO JIeNaeT ee MepPCIeKTUBHOM aJbTepHaTUBOM PacTUTENBHON IEIUTI0N03e I Crenuduiec-
KHX TIpEMEeHeHHH. [ Toro, 9T00B! MOTYyYUTh OaKTepHaIbHYIO IEJUII0NI03Yy C 3alaHHBIMH (U3UKO-XHUMHYECKUMH XapaKTepUCTHU-
KaMH, He00XOIUMO TIIATEIBHO HCCIIEIOBATh CIIOCOOHOCTH €€ MPOAYIIEHTa METa00IN3NPOBATh Pa3IMIHbIe HCTOYHUKH YIIepoaa
U UX BIMSHHE Ha KA4eCTBO CHHTE3MPOBAHHON IIEJUTIONO03EL. 1ebi0 JaHHOTO UCCIeN0BaHuUs IBISUIOCH N3yUSHUE BIUSHHUS COCTaBa
MUTATENBHON CPEbl, BKIIIOYAsi HCTOYHHUKH YTIIEPO/ia, BATAMHUHBI, MHHEPAIBHBIE COJIM U KHCIIOTHI, Ha IPOAYKTHBHOCTE M CBOMCTBA
OaKTepHaTbHOHN EJUTION03bL.

OOBEKTHI UCCIIETOBAHUS — YKCYCHOKUCHbIe OakTepun Acetobacterium xylinum B-12429 (HauuoHanbHbI OHOpECYPCHBIA LEHTP
BKIIM). Kynstypy BeIpammBanu npu Temiepatype 28 °C B TeueHune 72 4 Ha nUTaTenbHOM cpene Xectpuna-IlIpamma B mpucyt-
CTBUHU PA3INYHBIX UCTOYHUKOB YTJIEPOAA, a TAKIKE JOIMOJIHUTEIBbHBIX q)aKTOpOB PpocCTa B CTaTUYECKUX YCIIOBUAX ITPU ITEPUOANIECKOM
KyJIbTUBUPOBaHUU. CTPYKTYPHBIC XapaKTEPUCTUKH HOJIyYSHHBIX IJICHOK OaKTepHaNbHO LEIUTI0II03bI ObUIH H3Y4EHBI C TIOMOLIBIO
nH(}ppaKpacHOW CIIEKTPOCKONNH M CKaHUPYOLIeH 1eKTpoHHOH Mukpockonuu (COM). OuenunBanu Gpu3nko-XxuMHUYECKHE XapaK-
TEPUCTHKH GAKTEPUATBHON CIITIONO3EI, BKIKOYAs BOJOYACPKUBAIONLYIO CIIOCOOHOCTE M MHACKCHI KPUCTAIUINIHOCTH (1, 11 1)).
MaxkcuMalibHOe HaKOIUIEHHe OroMacchl OaKTepHaIbHON LeJUTION03kl Ha cpene XectpuHa-IlIpamMma npoucxoxmio Ha 10 cyTku
KYJIFTHBUPOBAHUS B CTATHYECKUX yCIOBHAX. Hambonbmmit BeIX0J GakTepHaIbHON HEeIUTIoNo3sl (4,4 I/I1) MOoydYeH ¢ NCIoIb30Ba-
HUEM (PYKTO3BI B KauecTBe MCTOYHUKA yriieposa ¢ koHneHTpamueit 20,0 r/in. IIpu ucnonb30BaHNM B Ka4eCTBE UCTOYHMKA yTIIe-
poJa TIIOKO3BI MIPOAYKTHBHOCTE OaKTepHaNbHON IeITiono3sl Hke (3,6 T/1). Ha mpoaykTHBHOCTS GakTepHalbHOM IIEeUTI0N036
OKa3bIBaJa BIMSHUE KOHIIEHTPALUs OCHOBHOTO MCTOYHUKA yriaepoaa: 10 % KoHIEHTparus criocoOCTBOBANA €€ MaKCHMalIbHOMY
BBIXOJy. BHECEHHUE JIONONTHUTENBHBIX KOMIIOHEHTOB B COCTAB ITMTATENLHOM CPEMIb, TAKMX KaK acCKopOWHOBas kucinora u MgSO,,
3¢ PEeKTUBHO BIHMAET Ha MPOAYKTHBHOCTh CHHTE3a OaKTepHaIbHON LEII0N03bl. bromnenkn 6akTepranbHON EIUTI0N036!, MOTY-
yeHHbIe Ha cpene HS ¢ keuno3oii u copburom, obnananyu Haubobliel BoAOyAep KuBaromiell cnocoOHOCThI0. MIHAEKCHI KpUCTai-
JMYHOCTH [T BceX 00pa3oB OaKTepHatbHOM LEJITI0NI03b! ObUTN NPUOIM3UTENBHO PaBHBI 1, UTO CBUAETENBCTBYET O CTAOMIBHON
KPUCTATITMYECKOH CTPYKType LIEJTI0NI03bl HE3aBUCUMO OT HCTOYHMKA YIIepoja B MUTATEIbHON Cpefie.

HccnenoBanue 1oka3aso, YTO COCTAB MUTATEIbHBIX CPeJ] OKa3bIBACT 3HAUNTEIbHOE BIMAHNUE Ha OMOCHHTE3 OaKTepuaabHOM 1IeJUTIo-
JI03B1. DTH pe3yJIbTaThl T0JUePKUBAIOT BA)KHOCTH ONITHMH3ALIMU COCTAaBA MUTATENIBHBIX CPE] TS IOBBILICHHUS TIPOIyKTHBHOCTH ee OHo-
CHHTE3a, YTO MOXKET OBITh UCIIOIH30BAHO B POMBIILICHHOCTH JUIS TTOJy4€HHs BHICOKOKAYEeCTBEHHOM OaKTepruaabHON LEJITIONO03bI.

KoaroueBsble ciioBa. bakrepuansHas 1eyutono3a, OMOCHHTE3, HICTOYHUKH YIIIepoa, GH3UKO-XUMHUIECKHe CBOICTBa, Acetobacterium
xylinum

®dunancupoBanme. Pabora BeimonHena npu noanepxke Pocecuiickoro HayuHoro Gonna, cormamenue Ne 24-24-00169.
Jas uurupoBanus: Amu A.-I'. A., Kpurep O. B. BiusiHue coctaBa nuTaTeNsHON Cpeibl Ha MPOAYKTUBHOCTD U (PH3HKO-XUMHYEC-

KUe CBOIcTBa OaKTepHanbHOH HEeUTI0N03bl. TeXHUKA U TEXHOJIOTHA MUIIEBBIX Mpon3BoACcTB. 2025. T. 55. Ne 3. C. 558-566. (Ha anra.)
https://doi.org/10.21603/2074-9414-2025-3-2587

Introduction This polysaccharide is present in all living things, from
Cellulose is a biopolymer with a high degree of poly- bacteria and algae to plants and animals [1]. Cellulose
merization. It is composed of glucose monomers that are is a highly abundant renewable biopolymer used in bio-
linked by f(1-4) glycosidic bonds to form a long chain. compatible and environmentally sustainable solutions.
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However, the growing demand for plant-based cel-
lulose has boosted global wood consumption, which has
made deforestation a major environmental issue [2].

Although plant cellulose is the most popular natural
polymer, its complex chemical composition limits its
use in cosmetics and pharmacy since it contains such
impurities such as lignin, hemicellulose, and pectin.

Bacterial cellulose is synthesized by various bacteria,
including Komagataeibacter, Agrobacterium, and Pseu-
domonas [3]. The Gram-negative acetic-acid Komagataei-
bacter xylinus often serve as a model organism due to its
high cellulose productivity [4]. Bacterial cellulose is
different from plant cellulose in some specific properties
that depend on the culture conditions. In particular, it has
a highly crystalline nanostructure (20—100 nm). It is pure
in that it is free of lignin or hemicellulose. Its water-hold-
ing capacity is 200 times its dry weight. Finally, it boasts
a high degree of polymerization. These properties make
bacterial cellulose a good alternative to plant cellulose
in biomedicine, cosmetics, high-quality acoustic dia-
phragms, papermaking, food industry, etc. [5, 6].

Bacterial cellulose is produced in the standard Hes-
trin-Schramm medium that consists of sources of car-
bon and nitrogen and growth factors, i.e., yeast extract
and peptone, which makes the process economically
unfeasible. Moreover, most strains are low-yielding,
which means the method cannot be applied on indus-
trial scale [6, 7]. The cultivation conditions are either
static or with stirring, each yielding a particular mor-
phological type of bacterial cellulose. The first one is a
biofilm formed on the interface between air and liquid.
The second is represented by granules that form stable
suspensions [8].

Numerous studies have attempted to increase the
yield of bacterial cellulose. Some focused on the nitro-
gen and carbon sources or minerals while others tested
different cultivation variables, e.g., temperature, pH,
dissolved oxygen, etc. [9]. As different carbon sources
have different molecular weight, chemical structure,
and bioavailability, their biosynthesis rates also differ
significantly, not to mention structural flaws. As a re-
sult, bacterial cellulose production remains a costly busi-
ness. The domestic bacterial cellulose industry needs
to optimize its culture medium parameters, including
composition, pH, and carbon source. The existing tech-
nological procedures face two fundamental limitations.
First, the biosynthesis rate remains low. Second, the
yield varies from batch to batch [10].

Bacterial cellulose with a specific physicochemical
profile is a result of a comprehensive study into the me-
tabolizing properties of each new cellulose producer
in relation to various carbon sources and their effect
on the quality of cellulose [10, 11].

Recent studies concentrate on alternative culture me-
dia obtained from agricultural and industrial wastes.
Such economically viable solutions may help to achieve
enough bacterial cellulose for industrial production [12].

560

For example, Saavedra-Sanabria ef al. [10] used cocoa
exudates to obtain 13.13 g/L bacterial cellulose. Sutthip-
hatkul et al. used rice noodles and Komagataeibacter sp.
PAPI1 strain to obtain 11.76 g/L bacterial cellulose [13].

Media obtained from food and agricultural wastes can
reduce the cost and time of fermentation, thus produc-
ing more high-quality bacterial cellulose for large-scale
multipurpose commercial production.

This research describes the effect of nutrient media
with different compositions, carbon sources, vitamins,
mineral salts, and acids, on the yield and properties of
bacterial cellulose.

Study objects and methods

The bacterial strain of Acetobacterium xylinum B-12429
was purchased from the National Bioresource Center of
the All-Russian Society of Microorganisms (Moscow,
Russia) to serve as a model microorganism.

The culture was grown at 28°C for 72 h on a nutrient
medium that contained 10.0 g/L yeast extract, 100.0 g/L
glucose, and 20.0 g/L CaCO,. Its pH was adjusted to 6.85.
The autoclave sterilization lasted for 15 min at 121°C.

To prepare the inoculum, we incubated some of the
culture in 50 cm?® of the sterile Hestrin-Schramm medium
with 5.0 g/L yeast extract, 20.0 g/L glucose, 5.0 g/L pep-
tone, 2.7 g/l Na,HPO,, and 1.15 g/L citric acid. Its pH
was adjusted to 6.85 by adding acetic acid or NaOH.

We used the following reagents (20.0 g/L) as carbon
sources: D-glucose (CAS No. 50-99-7, analytical grade,
00O LenReaktiv); D-fructose (CAS No. 57-48-7, analyt-
ical grade, OOO LenReaktiv); lactose monohydrate (CAS
No. 63-42-3, analytical grade, OOO Reakhim); D-xy-
lose (CAS No. 58-86-6, > 99%, OO0 Reakhim); mal-
tose monohydrate (CAS No. 6363-53-7, analytical grade,
00O LenReaktiv); glycerin (CAS No. 56-81-5, analytical
grade, OOO LenReaktiv); sucrose (CAS No. 57-50-1,
analytical grade, OOO LenReaktiv); D-sorbitol (CAS
No. 50-70-4, medical, OOO LenReaktiv); ethanol (CAS
No. 64-17-5, 96%, special purity, OOO Kristopharm).

The incubation was carried out in stationary condi-
tions at 28°C for 10 days.

After washing the resulting biofilm three times in an
alkaline solution of 1 M (NaOH) at 80°C for 30 min, we
washed the bacterial cellulose with hydrochloric acid
(1 M) and distilled water until pH 7.

We used the gravimetric method to measure the yield
of bacterial cellulose by drying it to a constant mass
at 40°C on a second-class scale [14]. The amount was
calculated as follows:

m, —m

vV

X = ey
where m | is the filter weight; m, is the filter weight with
the bacterial cellulose film after drying; V is the volume
of the nutrient medium.

The pH in the fermentation medium was control-
led by direct potentiometry (ionometry) in an OHAUS
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Starter ST300 multiparameter meter (OHAUS, China)
with a ST320 pH electrode.

To record the infrared Fourier spectra, we used an in-
frared FT-IR Nicolet iS5 Spectrometer (Thermo Scien-
tific, USA) in the mid-infrared region between 4,000 and
500 cm™'. Purified and dried cellulose served as sam-
ples on an ID7 Diamond ATR unit.

The crystallinity index was calculated as in [15]:

A
[R — 171430 (2)

93

The values of 7 and Iﬂ were calculated as in [16]:

Iﬂ — A710 (3)
A710 + A750
I,=100-1, (4)

A Tescan Vega 3 scanning electron microscope (Brno,
Czech Republic) made it possible to establish and ana-
lyze the structure of the purified and dried cellulose.
The dimensions of the studied samples for electron micro-
scopy were 20 x 20 x 10 mm.

The water-holding capacity of the bacterial cellulose
biofilm was determined by sieving. We soaked the bio-
films in distilled water for 1 h. After removing them
from the storage containers with tweezers, we put the
biofilms in a sieve and shook it twice vigorously to re-
move any water remaining on the surface. The samples
were weighed prior and after being dried to constant
weight in a drying cabinet at 50 + 1°C. The water-holding
capacity (WHC) was calculated as in [17]:

AL

wHC =" (5)

m
where m is the initial mass, g; m, is the post-drying
mass, g.

All experiments were carried out in five independent
experiments with three parallel measurements in each.
The results were presented as the sum of the mean value
and the standard deviation.

Results and discussion

Optimal cultivation conditions are the key to success-
ful bacterial cellulose production. They depend on the
components of the nutrient medium that affect the proper-
ties of bacterial cellulose and thus define its further ap-
plication. The traditional Hestrin-Schramm medium is
expensive and, in some cases, ineffective in terms of
yield and quality.

Bacterial cellulose absorbs more water than its alter-
natives, which indicates good prospects for new hydro-
gels and other polymers used in the food industry.

Figure 1 shows two types of bacterial cellulose ob-
tained under static cultivation conditions before and af-
ter purification.

It takes bacterial cellulose three days to start to de-
velop in the Hestrin-Schramm medium (Fig. 2). Its yield
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Figure 1. Bacterial cellulose biofilms obtained under static
conditions: a — before purification, b — after purification
and drying
Pucynok 1. Buonnenku 6akTepHaabHOM LEIITI0I036I,

MOJTYY€HHBIC B CTATUYECKUX YCIIOBUAX: 4 — 10 OUUCTKH;
b — mocie OYUCTKH U BBICYIIUBAHUA
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Figure 2. Effect of cultivation time on bacterial cellulose
yield and pH of the medium

Pucynok 2. MI3meHeHue BbIxoaa OakTepraabHON LeToa03s U pH
cpeibl B 3aBUCUMOCTH OT NPOJIOJIKUTEIbHOCTH KYJIbTUBUPOBAHUS

is very low (1.5 g/L) because the pH of the medium is
low due to the accumulation of secondary metabolites,
e.g., acetic acid. As a result, the maximal yield in the
Hestrin-Schramm medium occurred on day 10, when
the pH of the medium fell down from 6.85 to 4.15.

We observed the yield of bacterial cellulose under
static condition in the Hestrin-Schramm medium with
different carbon sources (20.0 g/L) as the main substrate
for 10 days (Fig. 3). The carbon sources included glu-
cose, fructose, lactose, xylose, maltose, glycerin, sucrose,
sorbitol, and ethanol.

Acetobacterium xylinum B-12429 proved able to
use various carbon sources (2%) for growth and cel-
lulose synthesis. The highest yield of 4.4 g/L bacterial
cellulose was observed in the fructose medium. This
monosaccharide triggered such an intense fermentation
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Figure 3. Effect of different carbon sources on bacterial cellulose yield over 10 days
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Figure 4. pH of the cultivation medium of Acetobacterium xylinum B-12429 over 10 days
Pucynox 4. smepenue pH cpenbl KyabTUBHpOBaHUs mTaMMa Acetobacterium xylinum B-12429 B teuenne 10 cyTok

due to the activity of phosphokinase, which inhibited
the conversion of fructose-1-phosphate to fructose-1,6-
bisphosphate [18].

The sorbitol sample also demonstrated a high yield
of 4.0 g/L. Glucose yielded much less bacterial cellu-
lose (3.60 g/L) due to the activity of gluconic acid, a by-
product of glucose oxidation. The maltose and xylose
substrates yielded a much lower amount (3.0 g/L), with
lactose showing an even worse performance (2.6 g/L).
Yet, these substances did have a certain substrate po-
tential, although with a much lower efficiency.

In our study, glycerol and sucrose showed a rather
low fermentation efficiency with yields of 2.8 g/L and
2.2 g/L, respectively. Mohammadkazemi ef al. [19], how-
ever, obtained the highest bacterial cellulose yield from
sucrose and mannitol.

Ethanol was responsible for the negligible yield of
0.8 g/L, which indicates its unsuitability as a carbon sour-
ce for cellulose production under these particular condi-
tions. Figure 4 illustrates the change in pH in the culture
medium for different carbon sources over 10 days.

Glucose reduced the pH value from the initial 6.85
to 3.21, probably, due to the formation of organic acids.
Maltose, glycerol, and fructose led to a small decrease
in the pH value from the initial 6.85 to 6.75, 6.65, and
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6.28, respectively. Perhaps, these carbon sources formed
no gluconic acid. Lactose, xylose, and sorbitol could act
as a substrate for glucose dehydrogenase, with a sig-
nificant drop in pH from 6.85 to 3.85.

Table 1 summarizes the effect of inorganic and or-
ganic components on cellulose biomass yield.

Other studies also reported the effect of various ad-
ditives on bacterial cellulose production in the Hestrin-
Schramm medium [8]. In this research, vitamins, etha-
nol, MgSO,, tartaric acid, and agar were able to boost
the yield, which allowed us to identify them as stimu-
lators of bacterial reproduction. The media with FeSO,,
CaCO,, and ZnSO, demonstrated no bacterial growth
and cellulose biosynthesis, which means they inhibited
the growth of A. xylinum B-12429.

The highest yield belonged to Medium 9 with agar,
Medium 4 with MgSO,, and Medium 2 with ascorbic
acid, amounting to 5.04, 4.86, and 4.05 g/L, respectively.
Rutin, ethanol, and tartaric acid (1%) did not increase
the biomass of bacterial cellulose, compared to the con-
trol sample (3.60 g/L).

Vitamins, ethyl alcohol, and all mineral salts but
CaCO, reduced pH in the medium from 6.85 to 3.05
during cultivation. Probably, when 4. xylinum B-12429
consumed these substances, they developed more organic
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Table 1. Cultivating Acetobacterium xylinum B-12429 on nutrient media with different compositions

Tabnuna 1. KynsruBuposanue mramma 6axtepuil Acetobacterium xylinum B-12429 Ha mUTaTeNbHBIX cpeaxX pa3IHYHOIO COCTaBa

Sample Composition Cellulose yield, g/L
Control Hestrin-Schramm 3.60 £ 0.18
Medium 1 Hestrin-Schramm + ethanol 3.34+0.17
Medium 2 Hestrin-Schramm + ascorbic acid 4.05+£0.20
Medium 3 Hestrin-Schramm + rutin 0.84 £0.04
Medium 4 Hestrin-Schramm + MgSO, 4.86£0.24
Medium 5 Hestrin-Schramm + tartaric acid 3.54+£0.18
Medium 6 Hestrin-Schramm + FeSO, 0
Medium 7 Hestrin-Schramm + CaCO, 0
Medium 8 Hestrin-Schramm + ZnSO, 0
Medium 9 Hestrin-Schramm + agar 5.04+0.25
10 -~
8 - B

pH
N

4 4
2 ﬂ
0 T T T T

Lk

Control Medium 1 Medium 2 Medium 3 Medium 4 Medium 5 Medium 6 Medium 7 Medium 8 Medium 9

= At the beginning of cultivation (0 day)

010 days

Figure 5. pH of different nutrient media with Acetobacterium xylinum B-12429 over 10 days

Pucynok 5. M3meHenne pH KyJnbTypanbHOM )XKUIKOCTH NPH BhIpamiuBaHuu Acetobacterium xylinum B-12429
Ha Pa3lIMYHBIX BapUAHTAX MMUTATEIbHBIX cpeJ] B TeueHUe 10 CyTOK KyJIbTHBHPOBAHUS

acids as by-products, which inhibited their growth and,
in turn, the yield of bacterial cellulose. The sample with
CaCO, raised its pH up to 8.5. This effect could be
caused by the lack of gluconic acid.

The cellulose fermentation profiles showed that the
glucose concentration was important for the effective
cultivation of A. xylinum B-12429 (Fig. 5). The high-
est cellulose yield (5.6 g/L) was achieved on day 10
of static cultivation. The lowest cellulose yield was ob-
served both at the lowest glucose concentration (1%)
and when it reached 10%. In this respect, our results
were consistent with some previous research that ob-
served the highest cellulose yield at 8% glucose [10].
Probably, the cellulose synthesis went down at < 2%
glucose because glucose was the only available source
of carbon and energy in the medium. The low cellu-
lose yield at > 10.0% glucose might be due to high the
osmotic pressure, low free water, or competitive inhi-
bition caused by the excess substrate (Fig. 6).

The pH values went down as the glucose concentra-
tion increased, stabilizing at ~ 5.5 when glucose was
> 15% (Fig. 7). As reported elsewhere, bacterial cellu-
lose-producing strains can maintain the pH of the me-
dium within 3.0-5.0 during the enzymatic process [8].

Bacterial cellulose yield, g/L

0 T T T T T T T
1 5 9 13 17 21 25 29 33

Glucose concentration, %

Figure 6. Effect of glucose concentration on bacterial
glucose synthesis by Acetobacter xylinum B-12429
in Hestrin-Schramm medium during 10 days of cultivation

Pucynok 6. BausiHre KOHIEHTpAaUH TTIOKO3bI HA CHHTE3
OakTepHaIbHO LeT0n03bl Acetobacter xylinum B-12429
Ha cpene HS B Teuenne 10 cyTOk KyJIbTHBHPOBAHHS
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Figure 7. Effect of glucose concentration on pH
of the culture medium with Acetobacterium xylinum
B-12429 during 10 days

Pucynox 7. U3menenue pH KynbTypaibHON )KUIKOCTH
IIpU BEIpamuBaHuu Acetobacterium xylinum B-12429
Ha Pa3IMYHBIX KOHIEHTPALUIX TIII0KO3H cpesl HS
B TeueHune 10 CyTOK KyJIbTUBUPOBAHUS
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Figure 8. FTIR spectra of bacterial cellulose
from different carbon sources

Pucynoxk 8. UK crekTpsl 6akTepuanbHON HEUTI0N03bI,
[IOJIy9aeMOH IIPH pa3HBIX HCTOYHHUKAX yTiIepoja

Figure 9. Scanning electron microscopy of bacterial cellulose obtained from different carbon sources: a — glucose;
b — fructose; ¢ — maltose; d — xylose; and e — sorbitol

Pucynok 9. M3o0paxenus 0akrepuansHoi 1emtono3sl (COM), mosydeHHONH Ha pa3inuYHbIX HCTOYHHKAX Yriepoaa: a — [III0K03a;
b — ppykTo3a; ¢ — ManpTo3a; d — KCHII03a; € — COPOUT

To define the effects of glucose, fructose, maltose,
xylose, and sorbitol on bacterial cellulose, we studied
its structure using infrared spectroscopy and scanning
electron microscopy (SEM). We also identified such phy-
sicochemical properties as water-holding capacity and
crystallinity indices / and / f of purified cellulose biofilm.

Figure 8 shows the results of infrared spectroscopy
obtained from different carbon sources.

The infrared spectroscopy revealed no significant
differences in the structure of the spectra across differ-
ent carbon sources. Obviously, the use of different car-
bon substrates did affect the basic structure of the re-
sulting cellulose.

In Figure 8, the strong absorption band at 3,444 cm™!
corresponded to the hydroxyl (OH) group. The absorp-
tion band that peaked at 2,918 cm™! corresponded to
C-H bond vibrations. The band at 1,058 cm™ marked
the stretching vibrations in the C-O-C structures. The
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absorption band at 1,111 cm™! corresponded to the glu-
copyranose stretch. The spectra were consistent with
the data in [20, 21], which reported bands typical of
cellulose in the FTIR spectra.

Figure 9 shows the scanning electron microscopy
images of bacterial cellulose synthesized by A. xylinum
B-12429 with various carbon sources.

The method of scanning electron microscopy made it
possible to describe the structure of bacterial cellulose
synthesized by 4. xylinum B-12429 in media with dif-
ferent carbon sources. The images for all samples showed
cellulose fibers with a distinctive and highly compact
morphology, indicating a fine and uniform matrix struc-
ture typical of cellulose I. We detected no large pores,
which means that all the carbon sources developed tight-
ly interwoven fibrous structures rather than interstitial
spaces. This compactness may have good implications
for bacterial cellulose to be used as a biomaterial.
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Indeed, the absence of porosity provides a number
of advantages, including high resistance to enzymatic
degradation and excellent mechanical properties, which
indicates good prospects for the packaging industry.

Biopolymers and their physicochemical profiling are
a popular research object since their physical and chem-
ical properties define the application options, e.g., in
pharmacy or food storage. These qualities often depend
on the proper choice of carbon source to be used in the
synthesis process. We measured the water-holding ca-
pacity and crystallinity indices / and / f for bacterial cel-
lulose obtained from glucose, fructose, xylose, maltose,
and sorbitol (Table 2).

Water-holding capacity is an important indicator
that determines the ability of a material to retain water.
In our research, the water-holding capacity of bacterial
cellulose depended on the carbon source. The bacterial
cellulose obtained from glucose had a water-holding
capacity of 63.57%. The highest water-holding capacity
belonged to the sample obtained from xylose (79.02%),
with similar rates observed for sorbitol (79.32%) and
maltose (75.01%). These substrates formed more stable
hydrophilic interactions due to their chemical structure.
Such complex carbohydrates as maltose provided a lower
water-holding capacity compared to simple monosac-
charides. This discovery opens up new prospects for
using sorbitol as a carbon source for bacterial cellulose
with strong water-holding properties.

Crystallinity indices / and /, P characterize the order of
cellulose macromolecules and their crystalline structure
(Egs 2—4). In our case, the crystallinity indices were ap-
proximately the same across the samples, which means
that the carbon source had no effect on the crystallinity
of bacterial cellulose. The biofilms obtained from dif-
ferent substrates demonstrated a fifty-fifty equilibrium
ratio of forms 1 and 2 of cellulose I. The crystallinity
of bacterial cellulose slightly depended on the carbon
source, as confirmed by crystallinity indices / and 1,
which ranged from 49.980 to 50.020% for all samples,
with a high degree of cellulose crystallinity regardless
of the carbon source. Cellulose molecules indicated a
stable structure and ordered organization, which indi-
cated a better mechanical and thermodynamic quality
of the final products.

Table 2. Physicochemical properties of bacterial cellulose
from various carbon sources

Tabnuna 2. XapakTepucTika 00pa3noB OakTepualbHON
LEJUTIONO03bI M3 PA3IMYHBIX HCTOYHUKOB YriIepoa

Carbon | Water-holding | Crystallinity | 7,% | [ ' %
source capacity, % index
Glucose 63.57 0.992 50.014 | 49.986
Fructose 70.69 0.989 50.020 | 49.980
Xylose 79.02 0.992 50.018 | 49.982
Maltose 75.01 0.991 50.020 | 49.980
Sorbitol 79.32 0.989 50.020 | 49.980
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Conclusion

We studied the mechanisms of bacterial cellulose bio-
synthesis by Acetobacterium xylinum B-12429. This strain
proved able to use various carbohydrates as carbon sour-
ces for cellulose synthesis. The cellulose yield depended
on the carbon source. Monosaccharides, such as fruc-
tose and sorbitol, provided the highest yield while di-
saccharides and ethanol performed much worse.

The nutrient media and additives also affected the
process of cellulose biosynthesis. Unlike iron and cal-
cium, ascorbic acid and MgSO, were able to boost the
cellulose production. When optimized properly, the nut-
rient media catalyzed the biosynthesis, thus opening
prospects for industrial high-quality bacterial cellulose
production. Carbon sources also affected the physico-
chemical profile of the resulting bacterial cellulose. The
samples obtained from xylose and sorbitol exhibited
the best water-holding properties, which renders them
good prospects as part of hydrogels and artificial tissues
used in medicine. The high crystallinity indices empha-
sized the structural quality and stability of biofilms ob-
tained from all carbon sources considered in this study.
Further research may reveal the exact effect of the above-
mentioned properties on the functionality of bacterial
cellulose in practical applications.
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Kpurepuu aBropcrBa

A-T'. A. Amm — pa3paboTka KOHICTIIAN ¥ TU3aifH Hc-
cienoBaHus, cOOp, aHAIN3 ¥ HHTEPIIPETAIUS TaHHBIX
U MaTEepUaJOB, TOJrOTOBKA U PEAAKTUPOBAHUE TEKCTA
crateu. O. B. Kpurep — c6op 1 aHanu3 nurepaTypHBIX
JIaHHBIX, 00pabOTKa WIUTFOCTPAIMHA, TIOJTOTOBKA CTAThH
K IMyOnMKanuy. Bee coaBTOPHI COTIIacOBAIM M YTBEPIFITH
OKOHYATENbHEIN BapUaHT TEKCTa CTaThbH U HECYT PaB-
HYIO OTBETCTBEHHOCTb 3@ €r0 LeIOCTHOCTh, JOCTOBEP-
HOCTh MaTepHaJIOB U IJIaruar.

Konduaukr nurepecon

ABTOpBI 3asBJIAIOT 00 OTCYTCTBHH ITOTEHIIUAIBHBIX
KOH(IMKTOB MHTEPECOB B OTHOIICHHH UCCIICIOBAHUS,
aBTOPCTBA U / WM ITyOJIMKAIY TaHHOW CTaThH.
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