УДК 66-664.38

А.П. Симоненкова

пищевой обогатитель для молочной промышленности

Показана возможность создания пищевого обогатителя для молочной промышленности, обладающего высокими потребительскими свойствами. Особое внимание уделено подбору композиционных сочетаний, отличающихся соотношением — мед натуральный : жмых растительного сырья : мука чечевичная. Композиционные сочетания, полученные в моделях, легли в основу разработки рецептуры пищевого обогатителя. Изучен основной химический состав, представлены результаты расчета степени удовлетворения в основных пищевых веществах при употреблении 100 г продукта. Создана частная диаграмма технологического процесса производства.

Пищевой обогатитель, растительное сырье, потребительские свойства, композиционные сочетания, рецептура, частная диаграмма технологического процесса производства.

Введение

Проблема обеспечения населения конкурентоспособными продуктами питания остается наиболее острой для агропромышленного комплекса РФ. В то же время анализ структуры питания населения России выявляет ряд негативных тенденций. Согласно обобщенным данным эпидемиологических исследований, выполненных ГНИЦ ПМ Минздравсоцразвития, они характеризуются снижением поступления в организм полноценных белков, витаминов и минеральных веществ, разбалансированностью рациона питания за счет избытка потребления простых углеводов и недостатка эссенциальных компонентов.

Важной задачей для пищевой промышленности является разработка и создание новых видов сырья, функционально-технологическими обладающего свойствами и позволяющего интенсифицировать технологический процесс, повышать качество и улучшать пищевую ценность готовой продукции. В связи с этим разработка ресурсосберегающих технологий с получением биологически активных продуктов высокого выхода, обладающих функциональнотехнологическими свойствами, и разработка на их основе продуктов питания улучшенной пищевой ценности является актуальным. При этом необходимо учитывать основополагающие данные современной науки о роли питания и отдельных пищевых веществ в поддержании здоровья и жизнедеятельности человека, в том числе потребности организма в отдельных пищевых веществах и энергии, реальной структуры питания, а также фактической обеспеченности витаминами, макро- и микроэлементами населения нашей страны.

В последние годы все чаще появляются продукты, сочетающие достаточно полный набор витаминов и минеральных веществ с одновременным введением других ценных компонентов: пищевых волокон, фосфолипидов, различных биологически активных добавок природного происхождения. Эти продукты оказывают защитное, стимулирующее или лечебное действие на те или иные физиологические системы и функции организма. Однако в ряде случаев сочетание в одном продукте некоторых обогащающих добавок оказывается нежелательным или

невозможным по соображениям их вкусовой несовместимости, нестабильности или нежелательных взаимодействий друг с другом.

Обогащать пищевыми добавками нужно прежде всего продукты массового и регулярного, лучше всего каждодневного потребления. Наибольший интерес на сегодняшний день представляют разработки новых видов молокосодержащих продуктов, при изготовлении которых достаточно легко могут сочетаться как функциональная направленность, так и хорошие вкусовые сочетания за счет совместного использования сырья животного и растительного происхождения. Актуальность таких исследований подтверждается Доктриной продовольственной безопасности РФ, учитывающей «Основы государственной политики Российской Федерации в области здорового питания населения на период до 2020 года». Производство молокосодержащих продуктов обусловлено доступностью ресурсов, независимостью производства от сезонных колебаний качества и количества сырья; минимизацией затрат на сырье, возможностью осуществлять производство в зависимости от спроса на продукцию, снижением или отсутствием отходов производства. При этом важно, чтобы замена традиционного молочного сырья на растительное не привела к изменениям основных вкусовых характеристик соответствующей пищи [2, 6, 7].

Большие перспективы в создании таких продуктов открываются при использовании растительного сырья отечественного производства — чечевицы, источника полноценного белка и вторичных продуктов переработки растительного сырья — жмыхов (подсолнечных, кедровых, арахисовых, конопляных, кунжутных и др.). По биологической полноценности белки жмыхов растительного сырья относятся к полноценным, некоторые из них по качеству приближаются к белкам животного происхождения [4, 5, 10].

Объекты и методы исследований

Организация постановки эксперимента в данных исследованиях включала процесс получения пищевого обогатителя при различных условиях варьирования сырья. В качестве основного сырья при создании пищевого обогатителя использовали мед по

ГОСТ 19792-2001 «Мед натуральный. Технические условия» — липовый и гречишный урожая 2012 года, муку чечевичную по ТУ 9293-009-89751414-10, жмыхи растительного сырья отечественного производства ООО «Виктория» (г. Великий Новгород) — жмых кедровый по ТУ 9146-002-73225681-2005 ФЗ № 90 от 24.06.2008, жмых кунжутный по ТУ 9146-016-70834238-10, жмых (мука) амарантовый по ТУ 9293-004-77872064-2011.

Выбор чечевицы в качестве сырья продиктован тем, что в комплекс ее питательных веществ входит полноценный белок, природные антиоксиданты, витамины, дефицитные макро- и микроэлементы (табл. 1).

Таблица 1

Химический состав семян чечевицы (% на сухое вещество)

Показатель	Значение			
Вода	7,6–14,6			
Белки	21,3–32,0			
Липиды	0,6–2,1			
Зола	2,30-4,4			
Крахмал	43,8-60,27			
Клетчатка	2,30-4,95			

Чечевица богата свободными аминокислотами глутаминовой и аспарагиновой, содержит тирозин (18,4-28,3 MF%), треонин (16,9-0,5 MF%), но несколько дефицитна по метионину и триптофану. Характеризуется небольшим количеством жира, жирнокислотный состав представлен биологически важными кислотами, такими как олеиновая и линоленовая, которые не синтезируются в организме. Нельзя не отметить высокое содержание углеводов в семенах чечевицы, которое составляет 45-53 % в зависимости от сорта [6]. Тем не менее присутствие именно олигосахаридов в чечевице ограничивает ее применение в технологии пищевых продуктов. Олигосахариды, такие как рафиноза, стахиоза и вербаскоза, относят к антипитательным веществам, так как они у большинства людей вызывают метеоризм, связанный с отсутствием у человека β-галактозидазы, необходимой для гидролиза этих сахаров. В чечевице обнаружены ингибиторы трипсина. Однако надо отметить, что чечевица - одна из немногих культур, которая ингибирует только трипсин, теряющий свою активность при тепловой обработке. В чечевице в отличие от других бобовых отсутствуют афлатоксины, антиалиментарные или какие-либо другие вредные вещества [1, 6-8]. Учитывая значительные ее ресурсы, в том числе в Орловской области, представляет научный и практический интерес вовлечение чечевицы в производственный цикл создания новых молокосодержащих продуктов, обладающих функционально-технологическими свойствами.

Кедровый жмых имеет сбалансированный химический состав, содержит 45–48 % легко перевариваемого белка, 20–25 % клетчатки; 10–15 % ПНЖК, является источником жирорастворимых и водорастворимых витаминов (А, Е, F, группа В, фолиевая кислота). Углеводный состав представлен полисахаридами и водорастворимыми сахарами (глюкоза 2,83 %, фруктоза

0,25 %, сахароза 0,44 %). К достоинствам белка кедрового жмыха можно отнести высокое соотношение между аминокислотами аргинин : лизин, что позволяет предположить наличие у него антихолестеринемических свойств.

В состав жмыха кунжутного входят незаменимые и заменимые аминокислоты в сбалансированных соотношениях, поли- и мононенасыщенные жирные кислоты (линолевая, олеиновая, альфа-линоленовая и др.), витамин E, каротиноиды, витамины группы B (B_1, B_2, B_3, B_6, B_9), макро- и микроэлементы (кальций, цинк, железо, фосфор, магний, натрий, калий, марганец, медь, селен и др.), фенольные антиоксиданты (сезамол, сезаминол), антиоксиданты-лигнаны (сезамин и сезамолин), органические кислоты, фитостеролы (в том числе β -систостерин). В значительном количестве присутствуют пектины и грубая клетчатка.

Амарантовая мука (жмых) обладает высокой биологической ценностью, служит богатым источником минеральных веществ - Ca, Mg, P и витаминов С и РР. Кроме того, в амарантовой муке содержится большое количество белка и клетчатки. По сбалансированности аминокислотного состава белки амаранта превосходят все иные растительные белки и содержат важнейшие незаменимые аминокислоты – лизин и метионин. Амарантовая мука в несколько раз превышает все другие растительные продукты по содержанию такого важного биологически активного вещества, как сквален, нормализующий уровень холестерина, обладающий регенеративным эффектом, выраженным антиоксидантным и иммуномодулирующим действием. Пищевые продукты на основе амарантовой муки не содержат глютена и рекомендуются для лечебно-профилактического питания больных целиакией, страдающих пищевыми аллергиями, при заболеваниях желудочно-кишечного тракта, при остеопорозе и ряде других заболеваний [4, 5, 9].

Лечебно-профилактические и диетические свойства натурального меда и продуктов пчеловодства подтверждены научными исследованиями российских и зарубежных ученых [3]. Основную часть меда составляют сахара (глюкоза, фруктоза, мальтоза, трегалоза, сахароза и др.), общее содержание которых достигает 10 %. Сахара, поступающие в организм с медом, являются универсальным антитоксическим средством. Глюкоза и фруктоза содействуют регулированию нервной деятельности, повышают давление крови, расширяют кровеносные сосуды, улучшают питание сердечной мышцы, усиливают диурез, улучшают обмен веществ, ускоряют сердечную деятельность и останавливают кровотечение (гемостатическое действие). Азотистые вещества содержатся в виде белков и небелковых соединений. По содержанию ферментов мед занимает одно из первых мест среди продуктов питания. Ферменты меда способствуют пищеварительным процессам в организме человека, стимулируют секреторную деятельность желудка и кишечника, облегчают усвоение питательных веществ, поступающих с другими продуктами [3]. В меде обнаружено 37 макро- и микроэлементов, в том числе фосфор, железо, медь, кальций и др. По количеству, составу и соотношению минеральных веществ мед близок к сыворотке крови человека [3].

Соотношение компонентов для производства пищевого обогатителя апробировалось в моделях трех типов исходя из наиболее оптимальных сочетаний органолептических и физико-химических показателей готового продукта. Созданные композиции отличались соотношением — мед натуральный : жмых растительного сырья : мука чечевичная (табл. 2).

Таблица 2

Матрица композиционных сочетаний, %

Компо-	Мед	Мука	Жмых	Жмых	Жмых	
зицион-	нату-	чече-	кед-	ама-	кун-	
ные со-	раль-	вич-	po-	ран-	жут-	
четания	ный	ная	вый	товый	ный	
Компо-	64	16	20	_	-	
зиция 1	60	18	24	-	-	
	56	20	26	-	_	
Компо-	64	16	_	20	_	
зиция 2	60	18	_	24	_	
	56	20	_	26	_	
Компо-	64	16	_	-	20	
зиция 3	60	18	_	-	24	
	56	20	_	_	26	

Результаты и их обсуждение

Как показали наши исследования, созданные композиции отличались хорошими органолептическими характеристиками. При этом наименее ощутимое влияние на органолептические показатели в данных композициях оказало внесение жмыхов растительного сырья в сочетании с чечевичной мукой в количествах 18 и 16 % соответственно. При этом все три типа композиций характеризовались сладким, слегка терпким вкусом и ароматом вносимого меда. С увеличением количества жмыхов до 18 % вкус композиций приобретал гармоничный приятный ореховый привкус и аромат, усиливающийся при внесении 20 % жмыхов. Однако в композиции № 2 при внесении 8 % амарантового жмыха ощущалась нежелательная легкая горечь. Наличие же бобового привкуса, обусловленное введением 20 % муки чечевичной, привело также к снижению общей органолептической оценки образцов. При этом органолептические показатели оценивались как «неудовлетворительные». Цвет композиций вне зависимости от количества и вида вносимых ингредиентов оставался от светло-янтарного при использовании липового меда до янтарного в случае применения гречишного. Консистенция модельных композиций всех трех типов характеризовалась как «гомогенная» и варьировалась от «густой полужидкой массы» при внесении 16 % муки чечевичной и 24 % жмыхов растительного сырья до «густой и плотной массы» при внесении 20 и 26 % муки чечевичной и жмыхов соответственно (табл. 3).

Таблица 3

Органолептические показатели композиционных сочетаний

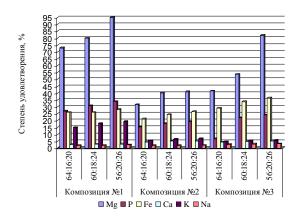
	композицион	ных сочетани	И				
Компо-	Компо- Органолептические показатели						
зицион-	•						
ные со-	Вкус и аромат	Цвет	Консистен-				
четания	•		ция				
Композиция № 1							
64:16:20	Сладкий,	От светло-	Гомогенная,				
	слегка терп-	янтарного	густая, по-				
	кий, слабый	до янтар-	лужидкая				
	приятный	ного	масса				
	ореховый						
60:18:24	В меру слад-	От светло-	Гомогенная,				
	кий, гармо-	янтарного	густая, вяз-				
	ничный, при-	до янтар-	кая масса				
	ятный орехо-	ного					
	вый						
56:20:26	Слегка терп-	От светло-	Однородная,				
	кий, ощути-	янтарного	густая, плот-				
	мый бобовый	до янтар-	ная масса				
		ного, слег-					
		ка кремо-					
		вый отте-					
	T.C.	нок					
(4.16.20		иция № 2	Г				
64:16:20	Сладкий,	От светло-	Густая, по-				
	слегка терп-	янтарного	лужидкая				
	кий, слабый	до янтар-	масса				
	приятный	ного					
60:18:24	ореховый	0	Г				
60:18:24	В меру слад-	От светло-	Гомогенная,				
	кий, гармо-	янтарного	густая, по-				
	ничный, при-	до янтар-	лужидкая				
	ятный орехо- вый	ного, слег-	масса				
	выи	ка кремо- вый отте-					
		нок					
56:20:26	Сладкий,	От светло-	Густая, плот-				
30.20.20	слегка терп-	янтарного	ная масса, с				
	кий, наличие	до янтар-	наличием не-				
	легкой го-	ного, кре-	значительного				
	речи, ощу-	мовый от-	количества				
	тимый бобо-	тенок	включений				
	вый		амарантового				
			жмыха				
	Композ	иция № 3					
64:16:20	Сладкий,	От светло-	Гомогенная,				
	слегка терп-	янтарного	густая, по-				
	кий, слабый	до янтар-	лужидкая				
	приятный	ного	масса				
	ореховый	<u> </u>					
60:18:24	В меру слад-	От светло-	Гомогенная,				
	кий, гармо-	янтарного	густая, вяз-				
	ничный, при-	до янтар-	кая масса				
	ятный opexo-	ного, слег-					
	вый	ка кремо-					
		вый отте-					
		нок					
56:20:26	Сладкий,	От светло-	Однородная,				
	слегка терп-	янтарного	густая, плот-				
	кий с ощу-	до янтар-	ная масса				
	тимым прив-	ного, кре-					
	кусом бобо-	мовый от-					
	вых	тенок					

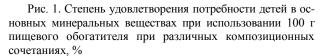
Таким образом, анализируя данные органолептической оценки композиционных сочетаний для пищевого обогатителя, можно заключить, что оптимальным соотношением вносимого меда, муки чечевичной и жмыхов растительного сырья, обладающим хорошими потребительскими свойствами, будет являться соотношение: для композиций № 1 и № 2 − 60:18:24, приемлемым − 56:20:26; для композиции № 3 − 64:16:20, приемлемым − 60:18:24. На основании полученных данных рассчитаны коэффициенты значимости, определены дескрипторы и составлен портрет «идеального» пищевого обогатителя.

Изучение основного химического (табл. 4) композиционных сочетаний показало, что они содержат значительное количество полноценного белка от 7 до 10 % в зависимости от вида используемого жмыха, характеризуются пониженным содержанием жира от 1,5 до 4,4 %, полноценным минеральным составом. Особенно ценным можно считать присутствие Fe - необходимого компонента окислительно-восстановительных реакций организма и Мп – участвующего в образовании костной и соединительной ткани, входящего в состав ферментов, включающихся в метаболизм аминокислот, углеводов, катехоламинов; необходим для синтеза холестерина и нуклеотидов. Углеводы композиционных сочетаний представлены в основном углеводами меда.

С учетом норм физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации была рассчитана

степень удовлетворения в основных пищевых веществах при использовании 100 г пищевого обогатителя для различных групп населения (MP 2.3.1.2432-08). Результаты расчета приведены на рис. 1 и 2.


Расчет степени удовлетворения показал, что разработанный пищевой обогатитель можно считать функциональным продуктом по содержанию основных макро- и микроэлементов.


Результаты, представленные на рис. 2, свидетельствуют, что при потреблении 100 г пищевого обогатителя повышается степень удовлетворения суточной потребности взрослого человека в фосфоре, магнии и железе.

Композиционные сочетания, полученные в моделях, легли в основу разработки рецептуры пищевого обогатителя. При разработке рецептуры и технологии учитывались сбалансированность компонентов, комплиментарность органолептически — гармоничный вкус и привлекательный внешний вид, сохранность витаминов. Частная диаграмма технологического процесса производства пищевого обогатителя представлена на рис. 3.

Таблица 4 Химический состав композиционных сочетаний (на 100 г продукта)

Композици-	Элементы химического состава								
онные	Белок, г	Жир,	Углеводы,	Са, мг	P,	Мg, мг	Мп, мг	Fe,	K,
сочетания	сочетания	Γ	Γ	Ca, Mi	МΓ	Mg, Mi	IVIII, MI	МΓ	МΓ
	Композиция № 1								
64:16:20	7,6	3,7	43,9	30,56	325,9	147,9	25,01	4,15	380,2
60:18:24	8,4	4,2	40,9	33,36	383,4	162,92	24,35	4,79	44,34
56:20:26	8,9	4,4	38,5	35,28	415,68	191,88	23,33	5,19	483,96
	Композиция № 2								
64:16:20	7,1	1,5	45,3	53,56	185,3	63,5	22,55	3,83	137,8
60:18:24	7,8	1,7	42,5	60,96	214,68	110,8	21,41	4,41	158,46
56:20:26	8,2	1,8	40,1	65,14	232,9	82,16	20,13	4,78	168,84
	Композиция № 3								
64:16:20	9,1	1,8	44,2	52,36	228,7	83,1	22,17	5,22	117,4
60:18:24	10,1	2,0	41,3	59,52	266,76	107,64	19,64	6,08	133,98
56:20:26	10,7	2,1	38,8	63,62	289,32	114,8	20,95	6,58	142,32

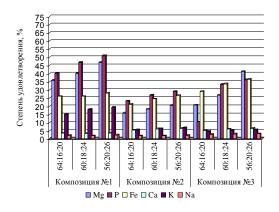


Рис. 2. Степень удовлетворения потребности взрослого населения в основных минеральных веществах при использовании 100 г пищевого обогатителя при различных композиционных сочетаниях, %

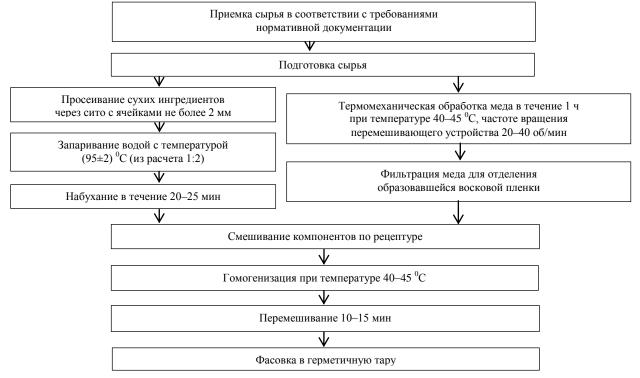


Рис. 3. Частная диаграмма технологического процесса производства пищевого обогатителя

К особенностям разработанной технологической схемы производства пищевого обогатителя можно отнести то, что сухие ингредиенты вносятся после просеивания и запаривания горячей водой (95±2) ⁰С с учетом водоудерживающей способности сырья. Совмещение стадий доведения меда до пластичной консистенции и смешивания рецептурных ингредиентов в одном аппарате позволит эффективно использовать производственные площади, исключив применение габаритного оборудования, снизить потери меда и упростить технологический процесс производства пищевого обогатителя.

Таким образом, предлагаемое сочетание компонентов в пищевом обогатителе придает ему профилактические свойства, направленные на повышение адаптогенных, защитных свойств организма независимо от характера вредного воздействия, и позволит расширить ассортимент молокосодержащих продуктов, обогащенных физиологически функциональными ингредиентами; повысить пищевую и биологическую ценность, снизить калорийность; обеспечить стабильность качественных характеристик продукта в процессе хранения и расширить сырьевую базу предприятий по переработке молока.

С целью расширения ассортимента и увеличения пищевой ценности молокосодержащих продуктов были проведены исследования по использованию пищевого обогатителя в плавленых сырных и творожных продуктах. Установлено, что введение пищевого обогатителя не усложняет технологический процесс и позволяет получать продукты с хорошими органолептическими показателями, функциональной направленности с гарантированным содержанием незаменимых микронутриентов.

Список литературы

- 1. Антипова, Л.В. Использование растительных белков на пищевые цели / Л.В. Антипова, В.М. Перелыгин, Е.Е. Курчаева // Молочная промышленность. − 2001. № 5. С. 29–30.
- 2. Асафов, В.А. Продукты на основе молочного и растительного сырья / В.А. Асафов, О.Г. Фоломеева, Н.Л. Танькова, Е.Л. Искакова // Молочная промышленность. 2004. № 12.
- 3. Гриневич, Н.А. Потребительские свойства натурального меда, формирование и оценка качества растительных сиропов на его основе: автореф. дис. ... канд. техн. наук. Орел, 2007. 20 с.
- 4. Морозов, А.И. Разработка и товароведная оценка полукопченых колбас с использованием пастообразных концентратов из семян амаранта и люпина: автореф. дис. ... канд. техн. наук. Кемерово, 2012. 19 с.
- 5. Марченков, Ф. Шроты и жмыхи в рационе сельскохозяйственных животных и птиц [Электронный ресурс]. Режим доступа: http://biochem.net.ru/publ.php?D=34&cmd=33&file=Publikac&view=l&id=5
- 6. Симоненкова, А.П. Разработка и оценка потребительских свойств комбинированных молочных продуктов / А.П. Симоненкова // Технология и товароведение инновационных пищевых продуктов. 2012. № 5 (16). С. 23–27.
- 7. Сергеева, Е.Ю. Разработка и оценка потребительских свойств комбинированных продуктов с использованием чечевичной дисперсии: автореф. дис. ... канд. техн. наук. Орел, 2012. 21 с.
- 8. Сергеева, Е.Ю. Чечевица в технологии молочных продуктов / Е.Ю. Сергеева, А.В. Мамаев, Н.Д. Родина, Л.А. Бобракова, К.А. Лещуков; под ред. А.В. Мамаева. Орел: Изд-во ОрелГАУ, 2009. 12 с.
- 9. Шмалько, Н.А. Разработка технологии ржано-пшеничного хлеба с амарантовой мукой / Н.А. Шмалько, И.А. Чалова, Н.Л. Ромашко // Современные проблемы науки и образования (приложение «Технические науки»). 2009. № 6. С. 13.
- 10. Babu U.S., Mitchell G.V, Witstnfeld P. Et al. Nutritional and hematological impact of dietary flaxseed an defatted flax-seed meal in rats // Int J Food Sci Nutr. -2000. V. 51, No. 2. -P. 109-117.

ФГБОУ ВПО «Госуниверситет – УНПК», 302020, Россия, г. Орел, Наугорское шоссе, 29. Тел.: 8(4862) 41-66-84 e-mail: unpk@ostu.ru

SUMMARY

A.P. Simonenkova

FOOD FORTIFIER FOR THE DAIRY INDUSTRY

Based on reliable theoretical analysis, the article shows the possibility of developing a food fortifier for the dairy industry, with high consumer properties. Special attention is paid to the selection of composites with different combinations – natural honey: pomace meal: lentil flour. Model composite combination formed the basis for the development of composition for a food fortifier. The main chemical composition, the results of calculation of the satisfaction degree for the basic food substances are studied when using 100 g of the product. Individual technological diagram for the production process is created.

Food fortifier, plant raw materials, consumer characteristics, composite combinations, recipes, individual production chart.

State University – Education Science Production Complex 302020, Russia, c. Orel, Naugorskoe shosse, 29 Phone: +7(4862) 41-66-84

e-mail: unpk@ostu.ru

