ISSN 2074-9414 (Печать),
ISSN 2313-1748 (Онлайн)

Использование молекулярно-генетических методов для микробиологического контроля пищевой продукции

Аннотация
В настоящее время для обнаружения и идентификации микроорганизмов разработан ряд технологий и коммерческих приложений, позволяющих выявлять нуклеиновые кислоты, входящие в состав микроорганизмов. Различные методы обнаружения и идентификации микроорганизмов активно разрабатываются в течение многих лет. Одним из наиболее перспективных направлений в молекулярно-генетической идентификации микробиоты в пищевых субстратах считаются технологии, основанные на анализе ДНК. Данный обзор посвящен рассмотрению различных аспектов идентификации микроорганизмов в пищевых субстратах на основе современной научной и методической литературы, а также запатентованных решений. Значительное внимание также уделено классическим методам идентификации микроорганизмов. Приводятся различные аспекты применения ПЦР для анализа микробных сообществ. Показано развитие современных технологий высокопроизводительного секвенирования (NGS) ДНК микробных сообществ в пищевых субстратах. Особе внимание уделено современным стратегиям идентификации патогенов с использованием NGS. Проведен анализ нормативной и методической литературы, а также анализ технических решений, раскрытых в источниках патентной литературы. Рассмотрены достоинства и недостатки различных методов исследования микроорганизмов в пищевых субстратах. В ходе проведенного обзора литературы показано, что наиболее многообещающим методом анализа присутствия прокариотических и эукариотических микроорганизмов, в том числе патогенных, является высокопроизводительное секвенирование.
Ключевые слова
Высокопроизводительное секвенирование (NGS), молекулярно-генетические методы идентификации микроорганизмов, контроль, ДНК, микробные сообщества
СПИСОК ЛИТЕРАТУРЫ
  1. Fenchel, T. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling / T. Fenchel, G. M. King, T. H. Blackburn.– Academic Press, 2012. – 303 p. DOI: https://doi.org/10.1016/C2010-0-67238-5.
  2. GeoChip 4: A functional gene-array-based high-throughput environmental technology for microbial community analysis / Q. Tu, H. Yu, Z. He [et al.] // Molecular Ecology Resources. – 2014. – Vol. 14, № 5. – P. 914–928. DOI: https://doi. org/10.1111/1755-0998.12239.
  3. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill / O. U. Mason, T. C. Hazen, S. Borglin [et al.] // ISME Journal. – 2012. – Vol. 6, № 9. – P. 1715–1727. DOI: https://doi.org/10.1038/ ismej.2012.59.
  4. Optimization and clinical validation of a pathogen detection microarray / C. W. Wong, C. L. W. Heng, L. Wan Yee [et al.] // Genome Biology. – 2007. – Vol. 8, № 5. – P. R93. DOI: https://doi.org/10.1186/gb-2007-8-5-r93.
  5. Norman, J. M. Kingdom-Agnostic Metagenomics and the Importance of Complete Characterization of Enteric Microbial Communities / J. M. Norman, S. A. Handley, H. W. Virgin // Gastroenterology. – 2014. – Vol. 146, № 6. – P. 1459–1469. DOI: https://doi.org/10.1053/j.gastro.2014.02.001.
  6. Cox, M. J. Sequencing the human microbiome in health and disease / M. J. Cox, W. O. C. M. Cookson, M. F. Moffatt // Human Molecular Genetics. – 2013. – Vol. 22, № R1. – P. R88–R94. DOI: https://doi.org/10.1093/hmg/ddt398.
  7. Beuchat, L. R. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables / L. R. Beuchat // Microbes and Infection. – 2002. – Vol. 4, № 4. – P. 413–423. DOI: https://doi.org/10.1016/S1286-4579(02)01555-1.
  8. Methods for the detection, isolation and characterization of food-borne fungi / R. A. Samson, E. S. Hoekstra, F. Lund [et al.] // Introduction fo food – and airborne fungi / R. A. Samson, E. S. Hoekstra, J. C. Frisvad [et al.]. – Utrecht : Centraalbureau voor Schimmelcultures, 2000. – P. 283–297.
  9. Houbraken, J. Diversity and biology of heat-resistant fungi / J. Houbraken, J. Dijksterhuis, R. A. Samson // Stress responses of Foodborne Microorganisms / H.-C. Wong. – Nova Press, 2012. – P. 331–353.
  10. Sex in Cheese: Evidence for Sexuality in the Fungus Penicillium roqueforti / J. Ropars, J. Dupont, E. Fontanillas [et al.] // PLoS One. – 2012. – Vol. 7, № 11. DOI: https://doi.org/10.1371/journal.pone.0049665.
  11. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae / J. Schacherer, J. A. Shapiro, D. M. Ruderfer [et al.] // Nature. – 2009. – Vol. 458, № 7236. – P. 342–345. DOI: https://doi.org/10.1038/nature07670.
  12. Апробация метода SSR-анализа для ДНК-паспортизации коммерческих штаммов винных дрожжей / И. И. Супрун, С. В. Токмаков, Н. М. Агеева // Политематической сетевой электронный научный журнал Кубанского государственного аграрного университета. – 2017. – № 125. – С. 151–163. DOI: https://doi.org/10.21515/1990-4665-125-009.
  13. Fay, J. C. Evidence for Domesticated and Wild Populations of Saccharomyces cerevisiae / J. C. Fay, J. A. Benavides // PLoS Genetics. – 2005. – Vol. 1, № 1. – P. 0066–0071. DOI: https://doi.org/10.1371/journal.pgen.0010005.
  14. Adaptive evolution by mutations in the FLO11 gene / M. Fidalgo, R. R. Barrales, J. I. Ibeas [et al.] // Proceedings of the National Academy of Sciences of the United States of America. – 2006. – Vol. 103, № 30. – P. 11228–11233. DOI: https://doi. org/10.1073/pnas.0601713103.
  15. Microsatellite marker-based assessment of the biodiversity of native bioethanol yeast strains / A. T. B. F. Antonangelo, D. P. Alonso, P. E. M. Ribolla [et al.] // Yeast. – 2013. – Vol. 30, № 8. – P. 307–317. DOI: https://doi.org/10.1002/yea.2964.
  16. Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production / R. Franco-Duarte, D. Bessa, F. Gonçalves [et al.] // FEMS Yeast Research. – 2017. – Vol. 17, № 6. DOI: https://doi.org/10.1093/ femsyr/fox057.
  17. Development of simple sequence repeat (SSR) markers for discrimination among isolates of Fusarium proliferatum / I. Moncrief, C. Garzon, S. Marek [et al.] // Journal of Microbiological Methods. – 2016. – Vol. 126. – P. 12–17. DOI: https://doi. org/10.1016/j.mimet.2016.03.013/.
  18. Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains / J.-L. Legras, O. Ruh, D. Merdinoglu [et al.] // International Journal of Food Microbiology. – 2005. – Vol. 102, № 1. – P. 73–83. DOI: https://doi. org/10.1016/j.ijfoodmicro.2004.12.007.
  19. Knight, S. Quantifying separation and similarity in a Saccharomyces cerevisiae metapopulation / S. Knight, M. R. Goddard // ISME Journal. – 2015. – Vol. 9, № 2. – P. 361–370. DOI: https://doi.org/10.1038/ismej.2014.132.
  20. Rapid and not culture-dependent assay based on multiplex PCR-SSR analysis for monitoring inoculated yeast strains in industrial wine fermentations / G. Cordero-Bueso, M. E. Rodríguez, C. Garrido [et al.] // Archives of Microbiology. – 2017. – Vol. 199, № 1. – P. 135–143. DOI: https://doi.org/10.1007/s00203-016-1287-4.
  21. RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharamyces: A fast method for species identification and the differentiation of flor yeasts / M. Teresa Fernández-Espinar, B. Esteve-Zarzoso, A. Querol [et al.] // Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology. – 2000. – Vol. 78, № 1. – P. 87–97. DOI: https://doi.org/10.1023/A:1002741800609.
  22. Bokulich, N. A. Next-generation approaches to the microbial ecology of food fermentations / N. A. Bokulich, D. A. Mills // BMB Reports. – 2012. – Vol. 45, № 7. – P. 377–389. DOI: https://doi.org/10.5483/BMBRep.2012.45.7.148.
  23. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers / B. Esteve-Zarzoso, C. Belloch, F. Uruburu [et al.] // International Journal of Systematic Bacteriology. – 1999. – Vol. 49, № 1. – P. 329–337. DOI: https://doi.org/10.1099/00207713-49-1-329.
  24. Sun, Y. Investigating of yeast species in wine fermentation using terminal restriction fragment length polymorphism method / Y. Sun, Y. Liu // Food Microbiology. – 2014. – Vol. 38. – P. 201–207. DOI: https://doi.org/10.1016/j.fm.2013.09.001.
  25. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review / H. Frickmann, A. E. Zautner, A. Moter [et al.] // Critical Reviews in Microbiology. – 2017. – Vol. 43, № 3. – P. 263–293. DOI: https://doi.org/10.31 09/1040841X.2016.1169990.
  26. Evaluation of the Performance Characteristics of an In-House One Step TaqMan Real Time-Polymerase Chain Reaction Assay for Detection and Quantification of Hepatitis C Virus / F. R. Kermani, S. A. Kafi-Abad, K. M. Hosseini [et al.] // Jundishapur Journal of Microbiology. – 2017. – Vol. 10, № 3. DOI: https://doi.org/10.5812/jjm.42884.
  27. Microvariation Artifacts Introduced by PCR and Cloning of Closely Related 16S rRNA Gene Sequences / A. G. C. L. Speksnijder, G. A. Kowalchuk, S. De Jong [et al.] // Applied and Environmental Microbiology. – 2001. – Vol. 67, № 1. – P. 469–472. DOI: https://doi.org/10.1128/AEM.67.1.469-472.2001.
  28. Genome sequencing in microfabricated high-density picolitre reactors / M. Margulies, M. Egholm, W. E. Altman [et al.] // Nature. – 2005. – Vol. 437, № 7057. – P. 376–380. DOI: https://doi.org/10.1038/nature03959.
  29. Balasubramanian, S. Solexa Sequencing: Decoding Genomes on a Population Scale / S. Balasubramanian // Clinical Chemistry. – 2015. – Vol. 61, № 1. – P. 21–24. DOI: https://doi.org/10.1373/clinchem.2014.221747.
  30. Comparison of next-generation sequencing systems / L. Liu, Y. Li, S. Li [et al.] // Journal of Biomedicine and Biotechnology. – 2012. DOI: https://doi.org/10.1155/2012/251364.
  31. Oliver, S. P. Foodborne Pathogens in Milk and the Dairy Farm Environment: Food Safety and Public Health Implications / S. P. Oliver, B. M. Jayarao, R. A. Almeida // Foodborne Pathogens and Disease. – 2005. – Vol. 2, № 2. – P. 115–129. DOI: https://doi.org/10.1089/fpd.2005.2.115.
  32. Peck, M. W. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? / M. W. Peck // Journal of Applied Microbiology. – 2006. – Vol. 101, № 3. – P. 556–570. DOI: https://doi.org/10.1111/j.1365-2672.2006.02987.x.
  33. Anaerobic sporeformers and their significance with respect to milk and dairy products / C. J. Doyle, D. Gleeson, K. Jordan [et al.] // International Journal of Food Microbiology. – 2015. – Vol. 197. – P. 77–87. DOI: https://doi.org/10.1016/j. ijfoodmicro.2014.12.022.
  34. Wine vinegar: technology, authenticity and quality evaluation / W. Tesfaye, M. L. Morales, M. C. García-Parrilla [et al.] // Trends in Food Science and Technology. – 2002. – Vol. 13, № 1. – P. 12–21. DOI: https://doi.org/10.1016/S0924-2244(02)00023-7.
  35. Gullo, M. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection / M. Gullo, P. Giudici // International Journal of Food Microbiology. – 2008. – Vol. 125, № 1. – P. 46–53. DOI: https://doi.org/10.1016/j.ijfoodmicro.2007.11.076.
  36. Application of culture culture-independent molecular biology based methods to evaluate acetic acid bacteria diversity during vinegar processing / C. Ilabaca, P. Navarrete, P. Mardones [et al.] // International Journal of Food Microbiology. – 2008. – Vol. 126, № 1–2. – P. 245–249. DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.05.001.
  37. Mitsuoka, T. Development of functional foods / T. Mitsuoka // Bioscience of Microbiota, Food and Health. – 2014. – Vol. 33, № 3. – P. 117–128. DOI: https://doi.org/10.12938/bmfh.33.117.
  38. Bacterial consortia at different wine fermentation phases of two typical Central European grape varieties: Blaufränkisch (Frankovka modrá) and Grüner Veltliner (Veltlínske zelené) / Z. Godálová, L. Kraková, A. Puškárová [et al.] // International Journal of Food Microbiology. – 2016. – Vol. 217. – P. 110–116. DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.10.015.
  39. Edwards, R. A. Viral metagenomics / R. A. Edwards, F. Rohwer // Nature Reviews Microbiology. – 2005. – Vol. 3, № 6. – P. 504–510. DOI: https://doi.org/10.1038/nrmicro1163.
  40. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities / R. Logares, S. Sunagawa, G. Salazar [et al.] // Environmental Microbiology. – 2014. – Vol. 16, № 9. – P. 2659–2671. DOI: https://doi.org/10.1111/1462-2920.12250.
  41. Continuous fermentation and kinetic experiments for the conversion of crude glycerol derived from second-generation biodiesel into 1,3 propanediol and butyric acid / C. Varrone, G. Floriotis, T. M. B. Heggeset [et al.] // Biochemical Engineering Journal. – 2017. – Vol. 128. – P. 149–161. DOI: https://doi.org/10.1016/j.bej.2017.09.012.
  42. Humblot, C. Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries / C. Humblot, J. P. Guyot // Applied and Environmental Microbiology. – 2009. – Vol. 75, № 13. – P. 4354–4361. DOI: https://doi.org/10.1128/AEM.00451-09.
  43. Peter-Katalinić, J. MALDI MS: A Practical Guide to Instrumentation, Methods and Applications / J. Peter-Katalinić, F. Hillenkamp. – Wiley-VCH, 2007. – 345 p. DOI: https://doi.org/10.1002/9783527610464.
  44. Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry / A. E. Zautner, W. O. Masanta, A. M. Tareen [et al.] // BMC microbiology. – 2013. – Vol. 13. DOI: https://doi. org/10.1186/1471-2180-13-247.
  45. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria / K. Cheng, H. Chui, L. Domish [et al.] // Proteomics – Clinical Applications. – 2016. – Vol. 10, № 4. – P. 346–357. DOI: https://doi.org/10.1002/prca.201500086.
  46. Urwyler, S. K. Advantage of MALDI-TOF-MS over biochemical-based phenotyping for microbial identification illustrated on industrial applications / S. K. Urwyler, J. Glaubitz // Letters in Applied Microbiology. – 2016. – Vol. 62, № 2. – P. 130–137. DOI: https://doi.org/10.1111/lam.12526.
  47. Evaluation of sample preparation methods for MALDI-TOF MS identification of highly dangerous bacteria / M. Drevinek, J. Dresler, J. Klimentova [et al.] // Letters in Applied Microbiology. – 2012. – Vol. 55, № 1. – P. 40–46. DOI: https:// doi.org/10.1111/j.1472-765X.2012.03255.x.
  48. Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in Northern Vietnam / N. T. L. Doan, K. Van Hoorde, M. Cnockaert [et al.] // Letters in Applied Microbiology. – 2012. – Vol. 55, № 4. – P. 265–273. DOI: https://doi.org/10.1111/j.1472-765X.2012.03287.x.
  49. Foodborne pathogens and their toxins / T. Martinović, U. Andjelković, M. Š. Gajdošik [et al.] // Journal of Proteomics. – 2016. – Vol. 147. – P. 226–235. DOI: https://doi.org/10.1016/j.jprot.2016.04.029.
  50. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens / C. Ferrario, G. A. Lugli, M. C. Ossiprandi [et al.] // International Journal of Food Microbiology. – 2017. – Vol. 256. – P. 20–29. DOI: https://doi. org/10.1016/j.ijfoodmicro.2017.05.001.
  51. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years / E. Scallan, R. M. Hoekstra, B. E. Mahon [et al.] // Epidemiology and Infection. – 2015. – Vol. 143, № 13. – P. 2795–2804. DOI: https://doi.org/10.1017/S0950268814003185.
  52. European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013 // EFSA Journal. – 2015. – Vol. 13, № 1. – P. 3991–4156. DOI: https://doi.org/10.2903/j.efsa.2015.3991.
  53. Food-borne diseases – The challenges of 20years ago still persist while new ones continue to emerge / D. G. Newell,M. Koopmans, L. Verhoef [et al.] // International Journal of Food Microbiology. – 2010. – Vol. 139. – P. S3–S15. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.01.021.
  54. A cholera outbreak associated with drinking contaminated well water / R. Ranjbar, M. Rahbar, A. Naghoni [et al.] // Archives of Iranian Medicine. – 2011. – Vol. 14, № 5. – P. 339–340.
  55. DNA microarray for direct identification of bacterial pathogens in human stool samples / Z. Mao, H. Zheng, X. Wang [et al.] // Digestion. – 2008. – Vol. 78, № 2–3. – P. 131–138. DOI: https://doi.org/10.1159/000174465.
  56. Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide / R. Ranjbar, A. Karami,S. Farshad [et al.] // New Microbiologica. – 2014. – Vol. 37, № 1. – P. 1–15.
  57. An overview of foodborne pathogen detection: In the perspective of biosensors / V. Velusamy, K. Arshak,O. Korostynska [et al.] // Biotechnology Advances. – 2010. – Vol. 28, № 2. – P. 232–254. DOI: https://doi.org/10.1016/j.biotechadv.2009.12.004.
  58. Impact of Next Generation Sequencing Techniques in Food Microbiology / B. Mayo, C. T. C. C. Rachid, Á. Alegría [et al.] // Current Genomics. – 2014. – Vol. 15, № 4. – P. 293–309. DOI: https://doi.org/10.2174/1389202915666140616233211.
  59. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing / R. Ranjan,A. Rani, A. Metwally [et al.] // Biochemical and Biophysical Research Communications. – 2016. – Vol. 469, № 4. – P. 967–977.DOI: https://doi.org/10.1016/j.bbrc.2015.12.083.
  60. Staden, R. A strategy of DNA sequencing employing computer programs / R. Staden // Nucleic Acids Research. – 1979.– Vol. 6, № 7. – P. 2601–2610. DOI: https://doi.org/10.1093/nar/6.7.2601.
  61. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain / X. Yang, N. R. Noyes, E. Doster [et al.] // Applied and Environmental Microbiology. – 2016. – Vol. 82, № 8. – P. 2433–2443. DOI: https://doi.org/10.1128/AEM.00078-16
  62. Abstract 5438: Multiplexed ICE COLD-PCR coupled to NGS and ddPCR enables enhanced detection of low-level DNA mutations in tissues and liquid biopsies / K. A. Richardson, S. Statt, G. Wu [et al.] // Cancer Research. – 2015. – Vol. 75, № 15 Supplement. – P. 5438–5438. DOI : https://doi.org/10.1158/1538-7445.AM2015-543.
  63. Perkel, J. Guiding our pcr experiments / J. Perkel // BioTechniques. – 2015. – Vol. 58, № 5. – P. 217–221. DOI: https://doi.org/10.2144/000114283.
  64. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms /L. Gerdes, A. Iwobi, U. Busch [et al.] // Biomolecular Detection and Quantification. – 2016. – Vol. 7. – P. 9–20. DOI: https://doi. org/10.1016/j.bdq.2015.12.003.
  65. Quantification of Zoonotic Bacterial Pathogens within Commercial Poultry Processing Water Samples Using Droplet Digital PCR / M. J. Rothrock, K. L. Hiett, B. H. Kiepper [et al.] // Advances in Microbiology. – 2013. – Vol. 3, № 5. – P. 403–411. DOI: https://doi.org/10.4236/aim.2013.35055.
  66. Kim, T. G. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil / T. G. Kim, S. Y. Jeong, K. S. Cho // Applied Microbiology and Biotechnology. – 2014. – Vol. 98, № 13. – P. 6105–6113. DOI: https://doi.org/10.1007/s00253-014-5794-4.
  67. Systemic Enzyme Therapy: Fact or Fiction? A Review with Focus on Bromelains, Proteolytic Enzymes from the Pineapple Plant / P. Meiser, Z. Xu, G. Kirsch [et al.] // Recent Advances in Redox Active Plant and Microbial Products: From Basic Chemistry to Widespread Applications in Medicine and Agriculture / C. Jacob, G. Kirsch, A. J. Slusarenko [et al.]. – Springer Netherlands, 2014. – P. 449–467. DOI: https://doi.org/10.1007/978-94-017-8953-0.
  68. Quantitative Analysis of Cereulide Toxin from Bacillus Cereus in Rice and Pasta Using Synthetic Cereulide Standardand 13C -Cereulide Standard – A Short Validation Study / A. Z. Muratovic, R. Tröger, K. Granelli [et al.] // Toxins. – 2014. – Vol. 6,№ 12. – P. 3326–3335. DOI: https://doi.org/10.3390/toxins6123326.
  69. Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS / M. Stobiecki, A. Skirycz, L. Kerhoas [et al.] // Metabolomics. – 2006. – Vol. 2, № 4. – P. 197–219. DOI: https://doi.org/10.1007/s11306-006-0031-5.
  70. Application of subproteomics in the characterization of Gram-positive bacteria / X.-Y. Yang, J. Lu, X. Sun // Journal of Proteomics. – 2012. – Vol. 75, № 10. – P. 2803–2810. DOI: https://doi.org/10.1016/j.jprot.2011.12.027.
  71. Extensive proteomic profiling of the secretome of European community acquired methicillin resistant Staphylococcus aureus clone / S. Enany, Y. Yoshida, S. Magdeldin [et al.] // Peptides. – 2012. – Vol. 37, № 1. – P. 128–137. DOI: https://doi. org/10.1016/j.peptides.2012.06.011.
  72. In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms / D. Field, R. O’Connor, P. D. Cotter [et al.] // Frontiers in Microbiology. – 2016. – Vol. 7. DOI: https://doi.org/10.3389/ fmicb.2016.00508.
  73. The complex microbiota of raw milk / L. Quigley, O. O’Sullivan, C. Stanton [et al.] // FEMS Microbiology Reviews. – 2013. – Vol. 37, № 5. – P. 664–698. DOI: https://doi.org/10.1111/1574-6976.12030.
  74. Enterotoxin Gene Profile and Molecular Characterization of Staphylococcus aureus Isolates from Bovine Bulk Milk and Milk Products of Tigray Region, Northern Ethiopia / E. K. Tarekgne, T. Skjerdal, S. Skeie [et al.] // Journal of Food Protection. – 2016. – Vol. 79, № 8. – P. 1387–1395. DOI: https://doi.org/10.4315/0362-028X.JFP-16-003.
  75. Production, characterization, and antimicrobial activity of a bacteriocin from newly isolated Enterococcus faecium IJ-31 / I. Javed, S. Ahmed, S. Manam [et al.] // Journal of Food Protection. – 2010. – Vol. 73, № 1. – P. 44–52. DOI: https://doi. org/10.4315/0362-028X-73.1.44.
  76. Bacterial spoilers of food: Behavior, fitness and functional properties / B. Remenant, E. Jaffrès, X. Dousset [et al.] // Food Microbiology. – 2015. – Vol. 45, № PA. – P. 45–53. DOI: https://doi.org/10.1016/j.fm.2014.03.009.
  77. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage / G. Lücking, M. Stoeckel, Z. Atamer [et al.] // International Journal of Food Microbiology. – 2013. – Vol. 166, № 2. – P. 270–279. DOI: https://doi.org/10.1016/j.ijfoodmicro.2013.07.004.
  78. Microbial dynamics during shelf-life of industrial Ricotta cheese and identification of a Bacillus strain as a cause of a pink discolouration / E. Sattin, N. A. Andreani, L. Carraro [et al.] // Food Microbiology. – 2016. – Vol. 57. – P. 8–15.
  79. QIIME allows analysis of high-throughput community sequencing data / J. G. Caporaso, J. Kuczynski, J. Stombaugh [et al.] // Nature Methods. – 2010. – Vol. 7, № 5. – P. 335–336. DOI: https://doi.org/10.1038/nmeth.f.303.
  80. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities / P. D. Schloss, S. L. Westcott, T. Ryabin [et al.] // Applied and Environmental Microbiology. – 2009. – Vol. 75, № 23. – P. 7537–7541. DOI: https://doi.org/10.1128/AEM.01541-09.
  81. The RDP-II (Ribosomal Database Project) / B. L. Maidak, J. R. Cole, T. G. Lilburn [et al.] // Nucleic Acids Research. – 2001. – Vol. 29, № 1. – P. 173–174. DOI: https://doi.org/10.1093/nar/29.1.173.
  82. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB / E. Pruesse, C. Quast, K. Knittel [et al.] // Nucleic Acids Research. – 2007. – Vol. 35, № 21. – P. 7188–7196. DOI: https://doi.org/10.1093/nar/gkm864.
  83. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB / T. Z. DeSantis,P. Hugenholtz, N. Larsen [et al.] // Applied and Environmental Microbiology. – 2006. – Vol. 72, № 7. – P. 5069–5072. DOI: https:// doi.org/10.1128/AEM.03006-05.
  84. Towards a unified paradigm for sequence-based identification of fungi / U. Kõljalg, R. H. Nilsson, K. Abarenkov [et al.]// Molecular Ecology. – 2013. – Vol. 22, № 21. – P. 5271–5277. DOI: https://doi.org/10.1111/mec.12481.
  85. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences /V. Deshpande, Q. Wang, P. Greenfield // Mycologia. – 2016. – Vol. 108, № 1. – P. 1–5. DOI: https://doi.org/10.3852/14-293.
  86. Зубков, М. Н. Биологические особенности бактерий рода Moraxella и их этиологическая роль в патологии человека. Сообщение II. Характеристика биохимических свойств и идентификация / М. Н. Зубков // Лабораторное дело. – 1988. – № 3. – С. 15–18.
  87. Зубков, М. Н. Характеристика серологических свойств бактерий рода Moraxella / М. Н. Зубков // Лабораторное дело. – 1990. – № 7. – С. 64–66.
  88. Калина, Г. П. Бактерии рода Moraxella. Экология / Г. П. Калина, Г. М. Трухина // Журнал микробиологии, эпидемиологи и иммунологии. – 1987. – Т. 64, № 2. – С. 93–102.
  89. Калина, Г. П. Патогенны ли моракселлы? Проблема и ее возможные решения / Г. П. Калина, Г. М. Трухина // Журнал микробиологии, эпидемиологи и иммунологии. – 1988. – Т. 65, № 1. – С. 80–88.
  90. Коротяев, А. И. Медицинская микробиология, иммунология и вирусология / А. И. Коротяев, С. А. Бабичев. – СПб. : СпецЛит, 2010. – 772 с.
  91. Поздеев, О. К. Медицинская микробиология / О. К. Поздеев. – М. : Гэотар-Мед, 2001. – 778 с.
Как цитировать?
О журнале