Rus / Eng

ISSN 2074-9414 (Print)

ISSN 2313-1748 (Online)
Publishing office, Editorial office:

Kemerovo State University

Alexander Prosekov

Executive Editor:
Anna Loseva

Publishing Editor:
Alena Kiryakova

Online Media Registration Number:
EL FS 77 - 72312 (01.02.2018)

6 Krasnaya Str.,
Kemerovo 650000,
tel.: +7 (3842) 58-80-24
Submit manuscript

Article information

Views: 97


Salishcheva O. , Kemerovo State University ,

Prosyekov A. , Kemerovo State University ,

Dolganuk V. , Kemerovo State University

Year 2020 Issue 2 UDC 54
DOI 10.21603/2074-9414-2020-2-329-342
Abstract Introduction. Pathogens keep evolving and develop resistance to antimicrobial drugs. As a result, science is constantly searching for new antimicrobial agents. Their complex forms based on organic and inorganic ligands exhibit a stronger synergistic antimicrobial effect, if compared to free ligands. The Scopus database contains 73 thousand scientific articles about antimicrobial activity descriptors published during the last five years. This selection includes ten thousand reviews and three thousand publications that feature the antimicrobial activity of platinum complexes. The research objective was to screen the antimicrobial properties of platinum nitrite complexes. The present paper highlights some of the current domestic and foreign trends in this field of research: the biochemical synthesis of peptides as metabolites of bacteria; the development of anti-biofilm agents that act on the protective systems of pathogens; the creation of antimicrobial nanosystems; the synthesis of antimicrobial surfactants; the synthesis and study of the antimicrobial activity of platinum complexes, etc. The authors also give a brief description of the mechanisms of antibacterial action. Study objects and methods. Five previously synthesized complexes of platinum (II) and platinum (IV), both mononuclear and bionuclear, were tested for antimicrobial activity. The platinum complexes contained terminal and bridged nitrite ligands. The test cultures included Bacillus subtilis and Aspergillus niger. The experiment involved the disk-diffusion method and the macro method of serial dilutions. Results and discussion. All the complexes inhibited the metabolic growth of microorganisms to various degrees. The results depended on the composition and structure of the complex, the number and charge of the coordination centers, the degree of platinum oxidation, and the thermodynamic stability and lability of ligand bonds with the complexing agent. The response to Aspergillus niger proved more pronounced. The Pt+2 nonelectrolyte complex containing both terminal and bridged nitrite ligands was less active than the Pt+2 cationic complex, which contained only bridged NO2– ligands. The highest antibacterial activity belonged to the bionuclear complex of PtIV-PtII [(NH3)2 (NO2)2PtIV(µ-NO2)2PtII(NH3)2](NO3)2 in relation to Bacillus subtilis B4647 and Aspergillus niger. The minimum inhibitory concentration (MIC) was > 125 μmol. Conclusion. The complexing resulted in a synergistic effect between the ligand and the complexing substance. The poly-core complexes contain two or more linked platinum centers that can covalently bind to DNA. They form a completely different type of DNA adducts compared to mononuclear complexes, as well as cross-links between DNA chains with fixation on different parts. The octahedral platinum complexes are kinetic and thermodynamically inert. Unlike similar squamous complexes, they proved to be able to act as prodrugs, recovering inside or outside the bacterial cell. The antimicrobial activity of the mixed-valence PtIV-PtII bionuclear complex [(NH3)2 (NO2)2PtIV(µ-NO2)2PtII(NH3)2](NO3)2 produced inhibitory effect comparable to the existing antimicrobial drugs. A further research will focus on composite mixtures of platinum complexes with other existing antimicrobial agents, as well as on other bacterial strains.
Keywords Antimicrobial activity, platinum, ligands, Bacillus subtilis, Aspergillus niger
Artice information Received November 30, -0001
Accepted November 30, -0001
Available online June 29, 2020
For citation Salishcheva O., Prosyekov A., Dolganuk V. ANTIMICROBIAL ACTIVITY OF MONONUCLEAR AND BIONUCLEAR NITRITE COMPLEXES OF PLATINUM (II) AND PLATINUM (IV). Foods Processing: Techniques and Technology, 2020, vol. 57, no. 2, pp. . (In Russ.)
  • Wang, Y.-P. Metabolite sensing and signaling in cell metabolism / Y.-P. Wang, Q.-Y. Lei // Signal Transduction and Targeted Therapy. – 2018. – Vol. 3. DOI:
  • Андрюков, Б. Г. Антимикробная активность вторичных метаболитов морских бактерий / Б. Г. Андрюков, В. В. Михайлов, Н. Н. Беседнова // Антибиотики и химиотерапия. – 2019. – Т. 64, № 7–8. – С. 44–55.
  • Pinu, F. R. Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols / F. R. Pinu, S. G. Villas-Boas, R. Aggio // Metabolites. – 2017. – Vol. 7, № 4. DOI:
  • Chemical synthesis and analysis of antimicrobial and hemolytic activity of structural analogous of a peptide protegrin 1 / P. M. Kopeykin, M. S. Sukhareva, N. V. Lugovkina [et al.] // Медицинский академический журнал. – 2019. – Т. 19, № S. – С. 169–170. DOI:
  • Перспективы использования бактериоцинов нормальной микробиоты в антибактериальной терапии (обзор) / М. И. Заславская, Т. В. Махрова, Н. А. Александрова [и др.] // Современные технологии в медицине. – 2019. – Т. 11, № 3. – С. 136–145. DOI:
  • Investigating antibiotic activity of the genus bacillus strains and properties of their bacteriocins in order to develop nextgeneration pharmaceuticals / M. I. Zimina, S. A. Sukhih, O. O. Babich [et al.] // Foods and Raw Materials. – 2016. – Vol. 4, № 2. – P. 92–100. DOI:
  • Determination of the intensity of bacteriocin production by strains of lactic acid bacteria and their effectiveness / M. I. Zimina, A. F. Gazieva, J. Pozo-Dengra [et al.] // Foods and Raw Materials. – 2017. – Vol. 5. № 1. – P. 108–117. DOI: https://
  • Валышев, А. В. Антимикробные соединения энтерококков / А. В. Валышев // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2014. – № 5. – С. 119–126.
  • Васильченко, А. С. Биологическая активность антимикробных пептидов enterococcus faecium / А. С. Васильченко, Е. А. Рогожин, А. В. Валышев // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2015. – № 4. – С. 22–26.
  • Antimicrobial activity of different antimicrobial peptides (AMPs) against clinical methicillin-resistant Staphylococcus aureus (MRSA) / E. Ciandrini, G. Morroni, D. Arzeni [et al.] // Current Topics in Medicinal Chemistry. – 2018. – Vol. 18, № 24. – P. 2116–2126. DOI:
  • Suresh, M. K. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms / M. K. Suresh, R. Biswas, L. Biswas // International Journal of Medical Microbiology. – 2019. – Vol. 309, № 1. – P. 1–12. DOI:
  • Synergic combinations of antimicrobial peptides (AMPs) against biofilms of methicillin-resistant Staphylococcus aureus (MRSA) on polystyrene and medical devices / E. Ciandrini, G. Morroni, O. Cirion [et al.] // Journal of Global Antimicrobial Resistance. – 2019. DOI:
  • Al-Tayyar, N. A. Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review / N. A. Al-Tayyar, A. M. Youssef, R. Al-hindi // Food Chemistry. – 2020. – Vol. 310. DOI: https://doi. org/10.1016/j.foodchem.2019.125915.
  • Антимикробная активность оксида графена / М. Н. Егорова, Л. А. Тарасова, Я. А. Ахременко [и др.] // Вестник Северо-Восточного федерального университета им. М. К. Аммосова. Серия: Медицинские науки. – 2019. – Т. 16, № 3. – С. 11–17. DOI:
  • Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation / L. Dyshlyuk, O. Babich, S. Ivanova [et al.] // International Biodeterioration and Biodegradation. – 2020. – Vol. 146. DOI: https://doi. org/10.1016/j.ibiod.2019.104821.
  • Синтез и антимикробная активность стабилизированных арабиногалактаном наночастиц селена из бис(2фенилэтил)диселенофосфината натрия / М. В. Лесничая, С. Ф. Малышева, Н. А. Белогорлова [и др.] // Известия Академии наук. Серия химическая. – 2019. – № 12. – С. 2245–2251.
  • Jamróz, E. The effect of nanofillers on the functional properties of biopolymer-based films: a review / E. Jamróz, P. Kulawik, P. Kopel // Polymers. – 2019. – Vol. 11, № 4. DOI:
  • Antimicrobial activity of surfactants of microbial origin / T. P. Pirog, D. A. Lutsay, L. V. Kliuchka [et al.] // Biotechnologia Acta. – 2019. – Vol. 12, № 1. – P. 39–57. DOI:
  • Synthesis of new sodium pectinate metal complexes with cobalt and nickel ions and their antimicrobial activity / S. T. Minzanova, D. M. Arkhipova, A. V. Khabibullina [et al.] // Doklady Chemistry. – 2019. – Vol. 487, № 2. – P. 207–211. DOI:
  • Synthesis, structural characterization, anti-proliferative and antimicrobial activity of binuclear and mononuclear Pt(II) complexes with perfluoroalkyl-heterocyclic ligands / S. Rubino, I. Pibiri, C. Minacori [et al.] // Inorganica Chimica Acta. – 2018. – Vol. 483. – P. 180–190. DOI:
  • Synthesis, structure, and antimicrobial activity of (carboxyalkyl)dimethylsulfonium halides / Yu. V. Bakhtiyarova, D. I. Bakhtiyarov, K. A. Ivshin [et al.] // Russian Journal of General Chemistry. – 2017. – Vol. 87, № 9. – P. 1903–1907. DOI: https://
  • New series of metal complexes by amphiphilic biopolymeric Schiff bases from modified chitosans: Preparation, characterization and effect of molecular weight on its biological applications / H. F. G. Barbosa, M. Attjioui, A. P. G. Ferreira [et al.] // International Journal of Biological Macromolecules. – 2020. – Vol. 145. – P. 417–428. DOI: ijbiomac.2019.12.153.
  • Design, synthesis, pharmacological evaluation and DNA interaction studies of binuclear Pt(II) complexes with pyrazolo[1,5-a]pyrimidine scaffold / M. V. Lunagariya, K. P. Thakor, B. N. Waghela [et al.] // Applied Organometallic Chemistry. – 2018. – Vol. 32, № 4. DOI:
  • New Ni(II), Pd(II) and Pt(II) complexes coordinated to azo pyrazolone ligand with a potent anti-tumor activity: Synthesis, characterization, DFT and DNA cleavage studies / E. A. Bakr, G. B. Al-Hefnawy, M. K. Awad [et al.] // Applied Organometallic Chemistry. – 2018. – Vol. 32, № 2. DOI:
  • Исследование антимикробной активности кумариновых субстанций в отношении Staphylococcus aureus и Pseudomonas aeruginosa / А. Н. Евстропов, Л. Г. Бурова, И. В. Широких [и др.] // Бактериология. – 2018. – Т. 3, № 2. – С. 16–19.
  • Разнолигандные комплексы платины(II) с биологически активными серу – и азотсодержащими лигандами / А. Н. Азизова, Д. Б. Тагиев, Ш. Г. Касумов [и др.] // Бутлеровские сообщения. – 2017. – Т. 51, № 8. – С. 27–32.
  • Комплексы четырехвалентной платины: синтез, строение, антимикробная активность / А. Р. Ткачёва, В. В. Шарутин, О. К. Шарутина [et al.] // Журнал общей химии. – 2020. – Т. 90, № 4. – С. 599–603. DOI: https://doi. org/10.31857/S0044460X20040150.
  • Galanski, M. Searching for the magic bullet: anticancer platinum drugs which can be accumulated or activated in the tumor tissue / M. Galanski, B. K. Keppler // Anti-Cancer Agents in Medicinal Chemistry. – 2007. – Vol. 7, № 1. – P. 55–73. DOI:
  • Салищева, О. В. Биядерные комплексы платины(II) и палладия(II) с нитритными мостиками / О. В. Салищева, Н. А. Старкина, М. И. Гельфман // Научное обозрение. – 2006. – № 1. – С. 47–50.
  • Салищева, О. В. Биядерные комплексы платины смешанной валентности / О. В. Салищева, Н. А. Старкина, М. И. Гельфман // Современные наукоемкие технологии. – 2007. – № 8. – С. 36.
  • Spectroscopic, theoretical, and antibacterial approach in the characterization of 5-methyl-5-(3-pyridyl)-2,4imidazolidenedione ligand and of its platinum and palladium complexes / S. J. Sabounchei, P. Shahriary, S. Salehzadeh [et al.] // Comptes Rendus Chimie. – 2015. – Vol. 18, № 5. – Р. 564–572. DOI:
  • Trans-influence of a nitro group in platinum complexes / M. I. Gel’fman, N. A. Starkina, O. V. Salishcheva [et al.] // Russian Journal of Inorganic Chemistry. – 2007. – Vol. 52, № 10. – P. 1551–1556. DOI: