ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Effect of Vibration on the Porosity and Strength of Instant Drink Granules

Abstract
Instant food products are extremely popular, and food industry knows numerous ways and methods of their production. To remain competitive, an instant drink production process should be efficient and flawless. The research objective was to improve the physical profile of granular instant products.
The study featured a vibrating drum unit controlled segregated flows. The granulometric composition, porosity, and strength of the obtained granules were tested in a vertical vibration cl assifier.
The new design of the drum with an installed classifier was able to grind larger granules. The research revealed the effect of frequency and amplitude on the porosity and strength of the granules. The rotation rate of the belt mixer had a greater effect on the agglomeration process than the amplitude and frequency of the vibrations in the generator. The porosity and strength of the granules depended on the parameters of the classifier. Therefore, the new drum design made it possible to control the operating parameters depending on the required properties of the finished product. The rational parameters were obtained as follows: frequency and amplitude of the vibration generator – 1 mm and 40 Hz, respectively; rotation speed – 7 rpm; drum tilt angle – 3°; amplitude and frequency of the classifier – 2 mm and 100 Hz, respectively.
The study revealed the optimal technological parameters for a new instant drink. The new vibration classifier increased the distribution density of the granular composition.
Keywords
Instant drink, granules, granulation, structure formation, por osity, strength, abrasion, vibro-roller, classifier
REFERENCES
  1. Latkov NYu, Koshelev YuA, Vekovtsev AA, Poznyakovskiy VM. Theoretical positions of modern sport nutrition and its practical implementation. Bulletin of the South Ural State University. Series: Food and Biotechnology. 2017;5(4):82–92. (In Russ.). https://doi.org/10.14529/food170411
  2. De Simone V, Caccavo D, Lamberti G, d'Amore M, Barba AA. Wet-granulation process: phenomenological analysis and process parameters optimization. Powder Technology. 2018;340:411–419. https://doi.org/10.1016/j.powtec.2018.09.053
  3. Popov AM, Plotnikov KB, Ivanov PP, Donya DV, Pachkin SG, Plotnikova IO. Instant drinks with amaranth flour: Simulation of mechatronic systems of production. Food Processing: Techniques and Technology. 2020;50(2):273–281. (In Russ.). https://doi.org/10.21603/2074-9414-2020-2-273-281
  4. Farberova EA, Tingaeva EA, Chuchalina AD, Kobeleva AR, Maximov AS. Obtaining granulated active carbon from wastes of vegetable raw materials. ChemChemTech. 2018;61(3):51–57. (In Russ.). https://doi.org/10.6060/tcct.20186103.5612
  5. Ermolaev YaYu. Research and development of production processes for barley flour instant granular drink. Cand. sci. eng. abstract diss. Kemerovo: Kemerovo Technological Institute of Food Industry; 2013. 20 p. (In Russ.).
  6. Shentsova ES, Kurchaeva EE, Vostroilov AV, Esaulova LA. Determination of technological parameters of the granulation of mixed fodders for young rabbits and the evaluation of their effectiveness. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(3):176–184. (In Russ.). https://doi.org/10.20914/2310-1202-2018-3-176-184
  7. Lisina NL. Environmental regulations in Russian food security. Foods and Raw Materials. 2019;7(1):193–201. https://doi.org/10.21603/2308-4057-2019-1-193-201
  8. Sevostyanov MV, Ilyina TN, Boichuk IP, Perelygin DN, Koshchukov AV, Emelyanov DA. Pneumatic mechanical equipment for microgranulation of manmade materials. Transactions of the Tambov State Technical University. 2017;2(3):452–460. (In Russ.). https://doi.org/10.17277/vestnik.2017.03.pp.452-460
  9. Lyubov VK, Popov AN, Popova EI, Yarkov DA. Survey of process for the production of granulated fuel wood. Cherepovets State University Bulletin. 2017;77(2):31–39. (In Russ.).
  10. Fedorov IA, Nguyen CV, Prosekov AYu. Study of the elastic properties of the energetic molecular crystals using density functionals with van der Waals corrections. ACS Omega. 2021;6(1):642–648. https://doi.org/10.1021/acsomega.0c05152
  11. Dyshlyuk L, Babich O, Ivanova S, Vasilchenco N, Prosekov A, Sukhikh S. Suspensions of metal nanoparticles as a basis for protection of internal surfaces of building structures from biodegradation. Case Studies in Construction Materials. 2020;12. https://doi.org/10.1016/j.cscm.2019.e00319
  12. Krainov YuE, Mikhailova OV, Kirillov NK. Analysis of working chambers which provide thermal treatment and waste granulation of agricultural raw materials. Vestnik of Ulyanovsk State Agricultural Academy. 2018;42(2):6–12. (In Russ.). https://doi.org/10.18286/1816-4501-2018-2-6-12
  13. Osokin AV. Development of the mathematical model of granulated material movement in flat matrix granulator spinnerets. Proceedings of Irkutsk State Technical University. 2018;22(4):43–61. (In Russ.). https://doi.org/ 10.21285/1814-3520-2018-4-43-61
  14. Veronica N, Goh HP, Kang CYX, Liew CV, Heng PWS. Influence of spray nozzle aperture during high shear wet granulation on granule properties and its compression attributes. International Journal of Pharmaceutics. 2018;553(1–2):474–482. https://doi.org/10.1016/j.ijpharm.2018.10.067
  15. Maytakov AL, Popov AM, Vetrova NT, Beryazeva LN, Zverikova MA. Modeling of manufacturing technologies for multicomponent granulated products. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(4):63–68. (In Russ.). https://doi.org/10.20914/2310-1202-2018-4-63-68
  16. Popov AM, Plotnikova IO, Plotnikov KB, Donya DV, Konyaev AV. Drum vibration granulator. Russia patent RU 2693772C2. 2019.
  17. Lebedev AB, Utkov VA, Khalifa AA. Sintered sorbent utilization for H2S removal from industrial flue gas in the process of smelter slag granulation. Journal of Mining Institute. 2019;237:292–297. https://doi.org/10.31897/pmi.2019.3.292
  18. Latkov NYu, Vekovtsev AA, Nikityuk DB, Poznyakovsky VM. Specialized product of antioxidant activity for sports nutrition. Human. Sport. Medicine. 2018;18(S):125–134. (In Russ.). https://doi.org/10.14529/hsm18s18
  19. Guo L, Tao H, Cui B, Janaswamy S. The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chemistry. 2019;277:504–514. https://doi.org/10.1016/j.foodchem.2018.11.014
  20. Yuan Q, Gong H, Xi H, Xu H, Jin Z, Ali N, et al. Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate. Journal of Environmental Sciences. 2019;84:144–154. https://doi.org/10.1016/j.jes.2019.04.006
  21. De Simone V, Dalmoro A, Lamberti G, Caccavo D, d'Amore M, Barba AA. HPMC granules by wet granulation process: Effect of vitamin load on physicochemical, mechanical and release properties. Carbohydrate Polymers. 2018;181:939–947. https://doi.org/10.1016/j.carbpol.2017.11.056
  22. Maytakov AL, Shlyapin AF, Tihonova NV, Poznyakovskiy VM. Substantiation of technological parameters of production and consumer properties of a new form of specialized beverage. Bulletin of the South Ural State University. Series: Food and Biotechnology. 2017;5(4):41–50. (In Russ.). https://doi.org/10.14529/food170406
  23. Cherepanova MV, Kuzina EO, Poylov VZ, Munin DA. Research of pulverized halurgic potassium chloride agglomeration. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2019;330(4):68–77. (In Russ.). https://doi.org/10.18799/24131830/2019/4/197
  24. Duy LX, Toan TQ, Anh DV, Hung NP, Huong TTT, Long PQ, et al. Optimization of canthaxanthin extraction from fermented biomass of Paracoccus carotinifacuens VTP20181 bacteria strain isolated in Vietnam. Foods and Raw Materials. 2021;9(1):117–125. https://doi.org/10.21603/2308-4057-2021-1-117-125
  25. Shad Z, Mirhosseini H, Motshakeri M, Sanjabi MR, Meor Hussin AS. α-amylase from white pitaya (Hylocereus undatus L.) peel: optimization of extraction using full factorial design. Foods and Raw Materials. 2021;9(1):79–86. https://doi.org/10.21603/2308-4057-2021-1-79-86
  26. Latkov NYu, Koshelev YuA, Vekovtsev AA, Poznyakovskiy VM. Theoretical positions of modern sport nutrition and its practical implementation. Bulletin of the South Ural State University. Series: Food and Biotechnology. 2017;5(4):82–92. (In Russ.). https://doi.org/10.14529/food170411
  27. De Simone V, Caccavo D, Lamberti G, d'Amore M, Barba AA. Wet-granulation process: phenomenological analysis and process parameters optimization. Powder Technology. 2018;340:411–419. https://doi.org/10.1016/j.powtec.2018.09.053
  28. Popov AM, Plotnikov KB, Ivanov PP, Donya DV, Pachkin SG, Plotnikova IO. Instant drinks with amaranth flour: Simulation of mechatronic systems of production. Food Processing: Techniques and Technology. 2020;50(2):273–281. (In Russ.). https://doi.org/10.21603/2074-9414-2020-2-273-281
  29. Farberova EA, Tingaeva EA, Chuchalina AD, Kobeleva AR, Maximov AS. Obtaining granulated active carbon from wastes of vegetable raw materials. ChemChemTech. 2018;61(3):51–57. (In Russ.). https://doi.org/10.6060/tcct.20186103.5612
  30. Ermolaev YaYu. Research and development of production processes for barley flour instant granular drink. Cand. sci. eng. abstract diss. Kemerovo: Kemerovo Technological Institute of Food Industry; 2013. 20 p. ( In Russ.).
  31. Shentsova ES, Kurchaeva EE, Vostroilov AV, Esaulova LA. Determination of technological parameters of the granulation of mixed fodders for young rabbits and the evaluation of their effectiveness. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(3):176–184. (In Russ.). https://doi.org/10.20914/2310-1202-2018-3-176-184
  32. Lisina NL. Environmental regulations in Russian food security. Foods and Raw Materials. 2019;7(1):193–201. https://doi.org/10.21603/2308-4057-2019-1-193-201
  33. Sevostyanov MV, Ilyina TN, Boichuk IP, Perelygin DN, Koshchukov AV, Emelyanov DA. Pneumatic mechanical equipment for microgranulation of manmade materials. Transactions of the Tambov State Technical University. 2017;2(3):452–460. (In Russ.). https://doi.org/10.17277/vestnik.2017.03.pp.452-460
  34. Lyubov VK, Popov AN, Popova EI, Yarkov DA. Survey of process for the production of granulated fuel wood. Cherepovets State University Bulletin. 2017;77(2):31–39. (In Russ.).
  35. Fedorov IA, Nguyen CV, Prosekov AYu. Study of the elastic properties of the energetic molecular crystals using density functionals with van der Waals corrections. ACS Omega. 2021;6(1):642–648. https://doi.org/10.1021/acsomega.0c05152
  36. Dyshlyuk L, Babich O, Ivanova S, Vasilchenco N, Prosekov A, Sukhikh S. Suspensions of metal nanoparticles as a basis for protection of internal surfaces of building structures from biodegradation. Case Studies in Construction Materials. 2020;12. https://doi.org/10.1016/j.cscm.2019.e00319
  37. Krainov YuE, Mikhailova OV, Kirillov NK. Analysis of working chambers which provide thermal treatment and waste granulation of agricultural raw materials. Vestnik of Ulyanovsk State Agricultural Academy. 2018;42(2):6–12. (In Russ.). https://doi.org/10.18286/1816-4501-2018-2-6-12
  38. Osokin AV. Development of the mathematical model of granulated material movement in flat matrix granulator spinnerets. Proceedings of Irkutsk State Technical University. 2018;22(4):43–61. (In Russ.). https://doi.org/ 10.21285/1814-3520-2018-4-43-61
  39. Veronica N, Goh HP, Kang CYX, Liew CV, Heng PWS. Influence of spray nozzle aperture during high shear wet granulation on granule properties and its compression attributes. International Journal of Pharmaceutics. 2018;553(1–2):474–482. https://doi.org/10.1016/j.ijpharm.2018.10.067
  40. Maytakov AL, Popov AM, Vetrova NT, Beryazeva LN, Zverikova MA. Modeling of manufacturing technologies for multicomponent granulated products. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(4):63–68. (In Russ.). https://doi.org/10.20914/2310-1202-2018-4-63-68
  41. Popov AM, Plotnikova IO, Plotnikov KB, Donya DV, Konyaev AV. Drum vibration granulator. Russia patent RU 2693772C2. 2019.
  42. Lebedev AB, Utkov VA, Khalifa AA. Sintered sorbent utilization for H2S removal from industrial flue gas in the process of smelter slag granulation. Journal of Mining Institute. 2019;237:292–297. https://doi.org/10.31897/pmi.2019.3.292
  43. Latkov NYu, Vekovtsev AA, Nikityuk DB, Poznyakovsky VM. Specialized product of antioxidant activity for sports nutrition. Human. Sport. Medicine. 2018;18(S):125–134. (In Russ.). https://doi.org/10.14529/hsm18s18
  44. Guo L, Tao H, Cui B, Janaswamy S. The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chemistry. 2019;277:504–514. https://doi.org/10.1016/j.foodchem.2018.11.014
  45. Yuan Q, Gong H, Xi H, Xu H, Jin Z, Ali N, et al. Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate. Journal of Environmental Sciences. 2019;84:144–154. https://doi.org/10.1016/j.jes.2019.04.006
  46. De Simone V, Dalmoro A, Lamberti G, Caccavo D, d'Amore M, Barba AA. HPMC granules by wet granulation process: Effect of vitamin load on physicochemical, mechanical and release properties. Carbohydrate Polymers. 2018;181:939–947. https://doi.org/10.1016/j.carbpol.2017.11.056
  47. Maytakov AL, Shlyapin AF, Tihonova NV, Poznyakovskiy VM. Substantiation of technological parameters of production and consumer properties of a new form of specialized beverage. Bulletin of the South Ural State University. Series: Food and Biotechnology. 2017;5(4):41–50. (In Russ.). https://doi.org/10.14529/food170406
  48. Cherepanova MV, Kuzina EO, Poylov VZ, Munin DA. Research of pulverized halurgic potassium chloride agglomeration. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2019;330(4):68–77. (In Russ.). https://doi.org/10.18799/24131830/2019/4/197
  49. Duy LX, Toan TQ, Anh DV, Hung NP, Huong TTT, Long PQ, et al. Optimization of canthaxanthin extraction from fermented biomass of Paracoccus carotinifacuens VTP20181 bacteria strain isolated in Vietnam. Foods and Raw Materials. 2021;9(1):117–125. https://doi.org/10.21603/2308-4057-2021-1-117-125
  50. Shad Z, Mirhosseini H, Motshakeri M, Sanjabi MR, Meor Hussin AS. α-amylase from white pitaya (Hylocereus undatus L.) peel: optimization of extraction using full factorial design. Foods and Raw Materials. 2021;9(1):79–86. https://doi.org/10.21603/2308-4057-2021-1-79-86
  51. Shentsova ES, Kurchaeva EE, Vostroilov AV, Esaulova LA. Determination of technological parameters of the granulation of mixed fodders for young rabbits and the evaluation of their effectiveness. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(3):176–184. (In Russ.). https://doi.org/10.20914/2310-1202-2018-3-176-184
How to quote?
Popov AM, Plotnikov KB, Ivanov PP, Plotnikov IB, Popov DM, Plotnikova IO. Effect of Vibration on the Porosity and Strength of Instant Drink Granules. Food Processing: Techniques and Technology. 2022;52(1):58–69. (In Russ.). https://doi.org/10.21603/2074-9414-2022-1-58-69
About journal

Download
Contents
Abstract
Keywords
References