ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Enzymatic Hydrolysis of Pretreated Miscanthus Biomass

Abstract
Forests being mostly non-renewable, miscanthus seems to be a promising alternative energy resource. This study investigates the enzymatic hydrolysis of pretreated miscanthus biomass.
The research featured Miscanthus sinensis Strictus biomass. The methods included raw material pretreatment, enzymatic hydrolysis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of monosaccharide residues, and nuclear magnetic resonance (1H NMR) spectrometry of non-hydrolyzed lignin.
A hammer mill with a particle size of 0.2–0.3 mm proved to be effective for preliminary mechanical processing of miscanthus. This type of treatment provided the maximal yield of carbohydrate-containing biomass (62.33 ± 1.87%). The optimal multi-enzyme composition included Cellulase Ultra obtained from Trichoderma reeseii, xylanase obtained from Thermomyces lanuginosus, and β-gluconase obtained from Myceliophtorafergusii. The fermentation temperature was 50 ± 1°C (72 ± 1 h). At these parameters, the conversion of holocellulose of miscanthus biomass was 96.0 ± 4.8%, and the yield of reducing substances was 97.00 ± 4.85%.
The article introduces the optimal enzymatic hydrolysis parameters for pretreating Miscanthus sinensis Strictus biomass as a source of carbohydrate-containing substrates and describes their subsequent use for bacterial cellulose biosynthesis. The carbohydrate composition of hydrolysates included residual lignin, such polysaccharides as glucan and xylan, and various monosaccharides, namely arabinose, xylose, galactose, glucose, and uronic acids. Hydrolyzed miscanthus proved to be an effective renewable and environmentally friendly biodiesel.
Keywords
Miscanthus, biofuel, enzymatic hydrolysis pretreatment, reducing sugars, non-hydrolysed lignin, cellulose
REFERENCES
  1. Anisimov AA, Khokhlov NF, Tarakanov IG. Miscanthus (Miscanthus spp.) in Russia: opportunities and prospects. New and non-traditional plants and application prospects. 2016;12:3–5. (In Russ.).
  2. Anisimov AA, Khokhlov NF, Tarakanov IG. Photoperiodic regulation of ontogenesis in different miscanthus species (Miscanthus spp.). Izvestiya of Timiryazev Agricultural Academy. 2016;(6):56–72. (In Russ.).
  3. Baibakova OV, Skiba EA. Biotechnological view of ethanol biosynthesis from miscanthus. Vavilov Journal of Genetics and Breeding. 2014;18(3):564–571. (In Russ.).
  4. Buryndin VG, Artyemov AV, Savinovskih AV, Krivonogov PS, Krivonogova AS. Biostability of binder-free wood and plant plastics protected with antiseptics. Foods and Raw Materials. 2022;10(1):148–154. https://doi.org/10.21603/2308-4057-2022-1-148-154
  5. Vazetdinova AA, Kharina MV, Loginova IV, Kleschevnikov LI. Enzymatic hydrolysis of cellulosic residuals of furfural production from vegetable raw materials. Bashkir Chemistry Journal. 2017;24(1):27–31. (In Russ.).
  6. Gushchina VA, Borisova EN. Growth and development of first year Miscanthus giganteus depending on hydrothermal conditions. Vestnik of Ulyanovsk State Agricultural Academy. 2017;37(1):12–18. (In Russ.). https://doi.org/10.18286/1816-4501-2017-1-12-18
  7. Gushina VA, Kukharev ON, Borisova YeN. Methods of weed control of miscanthus giant in agrocenoses. Volga Region Farmland. 2017;43(2):13–18. (In Russ.).
  8. Budaeva VV, Skiba EA, Baybakova OV, Makarova EI, Orlov SE, Kukhlenko AA, et al. Kinetics of enzymatic hydrolysis of lignocellulosic materials at different concentrations of substrat. Catalysis in Industry. 2015;(5);60–66. (In Russ.). https://doi.org/10.18412/1816-0387-2015-5-60-66
  9. Makarova EI, Budaeva VV. Bioconversion of non-food cellulosic biomass. Part 1. Proceedings of UniversitieS. Applied Chemistry and Biotechnology. 2016;6(2):43–50. (In Russ.). https://doi.org/10.21285/2227-2925-2016-6-2-43-50
  10. Gushina VA, Volodkin AA, Ostroborodova NI, Agapkin ND, Letuchiy AV. Peculiarities of growth and development of introduction of miscanthus gi-ganteus in the conditions of forest-step zone in Middle Volga. The Agrarian Scientific Journal. 2018;(1):10–13. (In Russ.).
  11. Dorogina OV, Vasilyeva OYu, Nuzhdina NS, Buglova LV, Gismatulina YuA, Zhmud EV, et al. Resource potential of some species of the genus Miscanthus Anderss. Under conditions of continental climate of West Siberian forest-steppe. Vavilov Journal of Genetics and Breeding. 2018;22(5);553–559. (In Russ.). https://doi.org/10.18699/VJ18.394
  12. Voronova MI, Surov OV, Rubleva NV, Kochkina NE, Prusova SM, Gismatulina YuA, et al. Properties of nanocrystalline cellulose obtained from celluloses of annual plants. Liquid Crystals and their Application. 2017;17(4):97–105. (In Russ.). https://doi.org/10.18083/LCAppl.2017.4.97
  13. Kapustyanchik SYu, Yakimenko VN. Miscantus is promising raw material, energy and phytomeliorative crop (literature review). The Journal of Soils and Environment. 2020;3(3). (In Russ.). https://doi.org10.31251/pos.v3i3.126
  14. Zapater M, Catterou M, Mary B, Ollier M, Fingar L, Mignot E, et al. A single and robust critical nitrogen dilution curve for Miscanthus × giganteus and Miscanthus sinensis. Bioenergy Research. 2017;10(1):115–128. https://doi.org/10.1007/s12155-016-9781-8
  15. Asano K, Ishida M, Ishida M. Effects of inclusion levels of pelleted silvergrass (Miscanthus sinensis Andress.) in the diet on digestibility chewing activity ruminal fermentation and blood metabolites in breeding Japanese Black cows. Animal Science Journal. 2017;88(3):468–475. https://doi.org/10.1111/asj.12665
  16. Ashman C, Awty-Carroll D, Mos M, Robson P, Clifton-Brown J. Assessing seed priming sowing date and mulch film to improve the germination and survival of direct-sown Miscanthus sinensis in the United Kingdom. GCB Bioenergy. 2018;10(9):612–627. https://doi.org/10.1111/gcbb.12518
  17. Baibakova OV. Effects of the pre-treatment of the miscanthus energy crop on the ethanol yield. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(3):79–84. (In Russ.). https://doi.org/10.21285/2227-2925-2018-8-3-79-84
  18. Saletnik B, Zagula G, Bajcar M, Czernicka M, Puchalski C. Biochar and biomass ash as a soil ameliorant: The effect on selected soil properties and yield of giant miscanthus (Miscanthus × giganteus). Energies. 2018;11(10). https://doi.org/10.3390/en11102535
  19. Hu Y, Schäfer G, Duplay J, Kuhn NJ. Bioenergy crop induced changes in soil properties: A case study on Miscanthus fields in the Upper Rhine Region. PLoS ONE. 2018;13(7). https://doi.org/10.1371/journal.pone.0200901
  20. Nakajima T, Yamada T, Anzoua KG, Kokubo R, Noborio K. Carbon sequestration and yield performances of Miscanthus × giganteus and Miscanthus sinensis. Carbon Management. 2018;9(4):415–423. https://doi.org/10.1080/17583004.2018.1518106
  21. Cayetano RDA, Kim TH. Two-stage processing of Miscanthus giganteus using anhydrous ammonia and hot water for effective xylan recovery and improved enzymatic saccharification. Bioresource Technology. 2018;255:163–170. https://doi.org/10.1016/j.biortech.2018.01.135
  22. El Achaby M, El Miri N, Hannach H, Gmouh S, Trabadelo V, Aboulkas A, et al. Cellulose nanocrystals from Miscanthus fibers: insights into rheological physico-chemical properties and polymer reinforcing ability. Cellulose. 2018;25(11):6603–6619. https://doi.org/10.1007/s10570-018-2047-1
  23. Schäfer J, Sattler M, Iqbal Y, Lewandowski I, Bunzel M. Characterization of Miscanthus cell wall polymers. GCB Bioenergy. 2019;11(1):191–205. https://doi.org/10.1111/gcbb.12538
  24. Bilska-Kos A, Panek P, Szulc-Głaz A, Ochodzki P, Cisło A, Zebrowski J. Chilling-induced physiological anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.). Journal of Plant Physiology. 2018;228:178–188. https://doi.org/10.1016/j.jplph.2018.05.012
  25. Li Y-H, Lin H-T, Xiao K-L, Lasek J. Combustion behavior of coal pellets blended with Miscanthus biochar. Energy. 2018;163:180–190. https://doi.org/10.1016/j.energy.2018.08.117
  26. Baute K, Van Eerd LL, Robinson DE, Sikkema PH, Mushtaq M, Gilroyed BH. Comparing the biomass yield and biogas potential of Phragmites australis with Miscanthus × giganteus and Panicum virgatum grown in Canada. Energies. 2018;11(9). https://doi.org/10.3390/en11092198
  27. Danielewicz D, Dybka-Stępień, Katarzyna;Surma-Ślusarska, B. Processing of Miscanthus × giganteus stalks into various soda and kraft pulps. Part I: Chemical composition, types of cells and pulping effects. Cellulose. 2018;25(11):6731–6744. https://doi.org/10.1007/s10570-018-2023-9
  28. Dhungana P, Reichert NA. Development of transformation and regeneration procedures for Miscanthus sinensis. In Vitro Biology Meeting. St. Louis; 2018. p. S49.
  29. Tamura K, Uwatoko N, Yamashita H, Fujimori M, Akiyama Y, Shoji A, et al. Discovery of natural interspecific hybrids between Miscanthus sacchariflorus and Miscanthus sinensis in Southern Japan: Morphological characterization genetic structure and origin. Bioenergy Research. 2016;9(1):315–325. https://doi.org/10.1007/s12155-015-9683-1
  30. Turner AP, Sama MP, Bryson LS, Montross MD. Effect of stem crushing on the uniaxial bulk compression behaviour of switchgrass and miscanthus. Biosystems Engineering. 2018;175:52–62. https://doi.org/10.1016/j.biosystemseng.2018.08.007
  31. Guo H, Wu Y, Hong C, Chen H, Chen X, Zheng B, et al. Enhancing digestibility of Miscanthus using lignocellulolytic enzyme produced by Bacillus. Bioresource Technology. 2017;245:1008–1015. https://doi.org/10.1016/j.biortech.2017.09.034
  32. Yoo JH, Seong ES, Ghimire BK, Heo K, Jin X, Yamada T, et al. Establishment of Miscanthus sinensis with decreased lignin biosynthesis by Agrobacterium-mediated transformation using antisense COMT gene. Plant Cell, Tissue and Organ Culture. 2018;133(3):359–369. https://doi.org/10.1007/s11240-018-1389-6
  33. Guo H, Chen H, Hong C, Jiang D, Zheng B. Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation. Ecotoxicology and Environmental Safety. 2017;141:119–128. https://doi.org/10.1016/j.ecoenv.2017.03.018
  34. Evdokimov IV. Methods for measuring biomass of soil microorganisms. Russian Journal of Ecosystem Ecology. 2018;3(3). (In Russ.). https://doi.org/10.21685/2500-0578-2018-3-5
  35. Samson A, Mos M, Najser J, Daroch M, Gallagher J. Gasification of Miscanthus × giganteus pellets in a fixed bed pilot-scale unit. Frontiers in Energy Research. 2018;6. https://doi.org/10.3389/fenrg.2018.00091
  36. Gismatulina YuA, Budaeva VV. Chemical composition of five Miscanthus sinensis harvests and nitric-acid cellulose therefrom. Industrial Crops and Products. 2017;109:227–232. https://doi.org/10.1016/j.indcrop.2017.08.026
  37. Gontarenko SM, Lashuk SO. Obtaining plant Miscanthus sacchariflorus (Maxim.) Hack and Miscanthus sinensis Andersson in vitro culture by indirect morphogenesis. Plant Varieties Studying and Protection. 2017;13(1):12–19. (In Ukr.).
  38. Hideno A. Thermal degradation behavior of Ball-milled Miscanthus plants and its relationship to enzymatic hydrolysis. Bioresources. 2018;13(3):6383–6395.
  39. Mihajlović M, Petrović J, Maletić S, Isakovski MK, Stojanović M, Lopičić Z, et al. Hydrothermal carbonization of Miscanthus × giganteus: Structural and fuel properties of hydrochars and organic profile with the ecotoxicological assessment of the liquid phase. Energy Conversion and Management. 2018;159:254–263. https://doi.org/10.1016/j.enconman.2018.01.003
  40. Che Kamarludin SN, Jainal MS, Azizan A, Safaai NSM, Daud ARM. Mechanical pretreatment of lignocellulosic biomass for biofuel production. Applied Mechanics and Materials. 2014;625:838–841. https://doi.org/10.4028/www.scientific.net/AMM.625.838
  41. Mayer-Laigle C, Blanc N, Rajaonarivony RK, Rouau X. Comminution of dry lignocellulosic biomass, a review: Part I. From fundamental mechanisms to milling behaviour. Bioengineering. 2018;5(2). https://doi.org/10.3390/bioengineering5020041
  42. Mayer-Laigle C, Rajaonarivony RK, Blanc N, Rouau X. Comminution of dry lignocellulosic biomass: Part II. Technologies, improvement of milling performances, and security issues. Bioengineering. 2018;5(3). https://doi.org/10.3390/bioengineering5030050
  43. Moiceanu G, Paraschiv G, Voicu G, Dinca M, Negoita O, Chitoiu M, et al. Energy consumption at size reduction of lignocellulose biomass for bioenergy. Sustainability. 2019;11(9). https://doi.org/10.3390/su11092477
  44. Kriger O, Budenkova E, Babich O, Suhih S, Patyukov N, Masyutin Ya, et al. The process of producing bioethanol from delignified cellulose isolated from plants of the miscanthus genus. Bioengineering. 2020;7(2). https://doi.org/10.3390/bioengineering7020061
  45. Choi O, Kang B, Cho SK, Park J, Lee Y, Kim W-I, et al. Identification of Pseudomonas syringae pv. syringae causing bacterial leaf blight of Miscanthus sinensis. Journal of Plant Diseases and Protection. 2017;124(1):97–100. https://doi.org/10.1007/s41348-016-0058-4
  46. Hoover A, Emerson R, Ray A, Stevens D, Morgan S, Cortez M, et al. Impact of drought on chemical composition and sugar yields from dilute-acid pretreatment and enzymatic hydrolysis of Miscanthus, a tall fescue mixture, and switchgrass. Frontiers in Energy Research. 2018;6. https://doi.org/10.3389/fenrg.2018.00054
  47. Kowalczyk-Jusko A. Chemical composition and energetic characteristics of Miscanthus sacchariflorus biomass as used for generation of energy. Przemysl Chemiczny. 2016;95(11):2326–2329. https://doi.org/10.15199/62.2016.11.37
  48. Lanzerstorfer C. Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel. Journal of Environmental Sciences. 2017;54:178–183. https://doi.org/10.1016/j.jes.2016.03.032
  49. Lanzerstorfer C. Combustion of Miscanthus: Composition of the ash by particle size. Energies. 2019;12(1). https://doi.org/10.3390/en12010178
  50. Lee S, Han J, Ro Hee-M. Interpreting the pH-dependent mechanism of simazine sorption to Miscanthus biochar produced at different pyrolysis temperatures for its application to soil. Korean Journal of Chemical Engineering. 2018;35(7):1468–1476. https://doi.org/10.1007/s11814-018-0054-4
  51. Schmidt A, Lemaigre S, Ruf T, Delfosse P, Emmerling C. Miscanthus as biogas feedstock: influence of harvest time and stand age on the biochemical methane potential (BMP) of two different growing seasons. Biomass Conversion and Biorefinery. 2018;8(2):245–254. https://doi.org/10.1007/s13399-017-0274-6
  52. Dąbkowska K, Alvarado-Morales M, Kuglarz M, Angelidaki I. Miscanthus straw as substrate for biosuccinic acid production: Focusing on pretreatment and downstream processing. Bioresource Technology. 2019;278:82–91. https://doi.org/10.1016/j.biortech.2019.01.051
  53. Moon Y-H, Lee, J-E, Yu G-D, Song Y-S, Lee Y-H, Kim K-S, et al. Ploidy level and reproductive organ abnormality in interspecific hybrids between tetraploid Miscanthus sacchariflorus and diploid M. sinensis bred from a single cross. Industrial Crops and Products. 2018;116:182–190. https://doi.org/10.1016/j.indcrop.2018.01.022
  54. Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A. Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining. 2012;6(5):580–598. https://doi.org/10.1002/bbb.1353
  55. Jones MB, Walsh M. Miscanthus: For energy and fibre. Earthscan; 2001. 192 p.
  56. Kashcheyeva EI, Mironova GF, Budaeva VV, Khan H. Bioconversion of oat hull and miscanthus cellulose to glucose solutions. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):654–664. https://doi.org/10.21285/2227-2925-2019-9-4-654-664
  57. Gismatulina YuA, Budaeva VV, Sakovich GV. Nitrocellulose synthesis from Miscanthus cellulose. Propellants, Explosives, Pyrotechnics. 2018;43(1):96–100. https://doi.org/10.1002/prep.201700210
  58. Yang H, Zhang Y, Kato R, Rowan SJ. Preparation of cellulose nanofibers from Miscanthus ×. Giganteus by ammonium persulfate oxidation. Carbohydrate Polymers. 2019;212:30–39. https://doi.org/10.1016/j.carbpol.2019.02.008
  59. Kalinoski RM, Flores HD, Thapa S, Tuegel ER, Bilek MA, Reyes-Mendez EY, et al. Pretreatment of hardwood and Miscanthus with Trametes versicolor for bioenergy conversion and densification strategies. Applied Biochemistry and Biotechnology. 2017;183(4):1401–1413. https://doi.org/10.1007/s12010-017-2507-3
  60. Davey CL, Jones LE, Squance M, Purdy SJ, Maddison AL, Cunniff J, et al. Radiation capture and conversion efficiencies of Miscanthus sacchariflorus, M. sinensis and their naturally occurring hybrid M. × giganteus. GCB Bioenergy. 2017;9(2):385–399. https://doi.org/10.1111/gcbb.12331
  61. Redcay S, Koirala A, Liu J. Effects of roll and flail conditioning systems on mowing and baling of Miscanthus × giganteus feedstock. Biosystems Engineering. 2018;172:134–143.
  62. Sarkar A, Asaeda T, Wang Q, Kaneko Y, Rashid H. Response of Miscanthus sacchariflorus to zinc stress mediated by arbuscular mycorrhizal fungi. Flora. 2017;234:60–68. https://doi.org/10.1016/j.flora.2017.05.011
  63. Seibert-Ludwig D, Hahn T, Hirth T, Zibek S. Selection and optimization of a suitable pretreatment method for miscanthus and poplar raw material. GCB Bioenergy. 2019;11(1):171–180. https://doi.org/10.1111/gcbb.12575
  64. Grams J, Kwapińska M, Jędrzejczyk M, Rzeźnicka I, Leahy JJ, Ruppert AM. Surface characterization of Miscanthus × giganteus and Willow subjected to torrefaction. Journal of Analytical and Applied Pyrolysis. 2019;138:231–241. https://doi.org/10.1016/j.jaap.2018.12.028
How to quote?
About journal

Download
Contents
Abstract
Keywords
References