ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Bacteriophages of Lactic Acid Bacteria

Abstract
Bacteriophages harm food production, disrupt fermenting, spoil dairy products, and cause financial loss. The article describes the biodiversity and properties of bacteriophages capable of lysing lactic acid bacteria used in fermented dairy and meat products.
The research featured bacteriophages obtained from fermented meat and dairy products. The methods included microbiological analyses, sensory evaluation, physico-chemical tests, genetic studies, electron microscopy, optical reassociation, and mathematical data processing.
Violation of the fermentation process always resulted in bacteriophages in the finished products, e.g., fermented dairy products, curd whey, raw smoked and dry-cured sausages, etc. The list of bacteriophages of lactic acid bacteria included 20 bacteriophages of Lactococcus ssp., 11 – of Streptococcus salivarius subsp. thermophilus, and 5 – of Lactobacillus delbrueckii subsp. bulgaricus. The study revealed the diversity of the isolated bacteriophages, their molecular and biological profile, the titer and range of their new hosts, and the differences from standard ones. The bacteriophages proved to be able to infect a wider range of lactic acid bacteria.
The article describes the change in the biodiversity and evolution of bacteriophages depending on their lytic action and virulence. The improved collection of bacteriophages and their detection cultures contribute to an earlier and more effective identification of bacteriophages in fermented products.
Keywords
Bacteriophages, lysis, lactic acid bacteria, starter cultures, fermented products
REFERENCES
  1. Chaplygina TV, Prosekov AYu, Babich OO, Pavsky VA, Ivanova SA. Functional dairy products are protection during pandemic. Dairy Industry. 2020;(6):26–28. (In Russ.). https://doi.org/10.31515/1019-8946-2020-06-26-28
  2. Belmer SV. Fermented milk products: from history to the present. Russian Bulletin of Perinatology and Pediatrics. 2019;64(6):119–125. (In Russ.). https://doi.org/10.21508/1027-4065-2019-64-6-119-125
  3. Zobkova ZS. Dependence of the relative biological value of fermented milk drinks on the type of starter microorganisms. Dairy Industry. 2020;(8):36–37. (In Russ.).
  4. Goroshchenko LG. Dynamics of fermented milk products' production in 2020. Dairy Industry. 2021;(8):63–64. (In Russ.).
  5. Khrundin DV, Ponomarev VYa, Yunusov ESh. Fermented oat milk as a base for lactose-free sauce. Foods and Raw Materials. 2022;10(1):155–162. https://doi.org/10.21603/2308-4057-2022-1-155-162
  6. Gavrilova N, Chernopolskaya N, Molyboga E, Shipkova K, Dolmatova I, Demidova V, et al. Biotechnology application in production of specialized dairy products using probiotic cultures immobilization. International Journal of Innovative Technology and Exploring Engineering. 2019;8(6):642–648.
  7. Zakharova LM, Gorbunchikova MS. A new synbiotic fermented dairy product: technological production features. Food Processing: Techniques and Technology. 2021;51(1):17–28. (In Russ.). https://doi.org/10.21603/2074-9414-2021-1-17-28
  8. Martinchik AN, Keshabyants EE, Peskova EV, Mikhaylov NA, Baturin AK. Dairy products and obesity: pro and contra, Russian experience. Problems of Nutrition. 2018;87(4):39–47. (In Russ.). https://doi.org/10.24411/0042-8833-2018-10040
  9. Vinicius de Melo Pereira G, de Carvalho Neto DP, Junqueira ACO, Karp SG, Letti LAJ, Magalhães Júnior AI, et al. A review of selection criteria for starter culture development in the food fermentation industry. Food Reviews International. 2020;36(2):135–167. https://doi.org/10.1080/87559129.2019.1630636
  10. Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, et al. Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science and Food Safety. 2020;19(1):184–217. https://doi.org/10.1111/1541-4337.12520
  11. Bintsis T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology. 2018;4(4):665–684. https://doi.org/10.3934/microbiol.2018.4.665
  12. Yang Y, Babich OO, Sukhikh SA, Zimina MI, Milentyeva IS. Identification of total aromas of plant protein sources. Foods and Raw Materials. 2020;8(2):377–384. http://doi.org/10.21603/2308-4057-2020-2-377-384
  13. Maske BL, de Melo Pereira GV, da Silva Vale A, Marques Souza DS, De Dea Lindner J, Soccol CR. Viruses in fermented foods: are they good or bad? Two sides of the same coin. Food Microbiology. 2021;98. https://doi.org/10.1016/j.fm.2021.103794
  14. Muhammed MK, Kot W, Neve H, Mahony J, Castro-Mejía JL, Krych L, et al. Analysis of dairy bacteriophages: Extraction method and pilot study on whey samples derived from using undefined and defined mesophilic starter cultures. Applied and Environmental Microbiology. 2017;83(19). https://doi.org/10.1128/AEM.00888-17
  15. McDonnell B, Mahony J, Hanemaaijer L, Neve H, Noben J-P, Lugli GA, et al. Global survey and genome exploration of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus. Frontiers in Microbioligy. 2017;8. https://doi.org/10.3389/fmicb.2017.01754
  16. de Melo Pereira GV, de Carvalho Neto DP, Maske BL, de Dea Lindner J, Vale AS, Favero GR, et al. An updated review on bacterial community composition of traditional fermented milk products: what next-generation sequencing has revealed so far? Critical Reviews in Food Science and Nutrition. 2020;62(7):1870–1889. https://doi.org/10.1080/10408398.2020.1848787
  17. Garmaeva S, Sinha T, Kurilshikov A, Fu J, Wijmenga C, Zhernakova A. Studying the gut virome in the metagenomic era: Challenges and perspectives. BMC Biology. 2019;17(1). https://doi.org/10.1186/s12915-019-0704-y
  18. Dugat-Bony E, Lossouarn J, de Paepe M, Sarthou A-S, Fedala Y, Petit M-A, et al. Viral metagenomic analysis of the cheese surface: A comparative study of rapid procedures for extracting viral particles. Food Microbiology. 2020;85. https://doi.org/10.1016/j.fm.2019.103278
  19. Laranjo M, Potes ME, Elias M. Role of starter cultures on the safety of fermented meat products. Frontiers in Microbiology. 2019;10. https://doi.org/10.3389/fmicb.2019.00853
  20. Ganina VI. Bacteriophages and ways to reduce their quantities. Dairy Industry. 2016;(2):41–43. (In Russ.).
  21. Briggiler Marcó M, Mercanti DJ. Bacteriophages in dairy plants. Advances in Food and Nutrition Research. 2021;97:1–54. https://doi.org/10.1016/bs.afnr.2021.02.015
  22. Pujato SA, Quiberoni A, Mercanti DJ. Bacteriophages on dairy foods. Journal of Applied Microbiology. 2018;126(1):14–30. https://doi.org/10.1111/jam.14062
  23. Briggiler Marcó M, Suárez VB, Quiberoni A, Pujato SA. Inactivation of dairy bacteriophages by thermal and chemical treatments. Viruses. 2019;11(5). https://doi.org/10.3390/v11050480
  24. Sorokina NP, Kuraeva EV, Kucherenko IV, Cheshun KA. The spectrum of lytic activity of collection bacteriophages infecting lactococci. Dairy Industry. 2020;(11):27–29. (In Russ.).
  25. Ganina VI. The temperature effect on the survival of bacteriophages in the biotechnology of fermented milk products. Dairy Industry. 2020;(3):31–33. (In Russ.). https://doi.org/10.31515/1019-8946-2020-03-32-33
  26. Buslenka AV, Barunova SB, Shpanikava EV, Vasylenko SL, Zhabanos NK, Furyk NN. Investigation of the collection bacteriophages biological properties of lactic acid bacteria. Topical Issues of Processing of Meat and Milk Raw Materials. 2019;(13):47–55. (In Russ.).
  27. Tkachenko VV, Odegov NI, Dorofeev RV. Preparation of the “sterile” phagelysates. Dairy Industry. 2017;(1):48–49. (In Russ.).
  28. Ackermann H-W, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Research in Microbiology. 2007;158(7):555–566. https://doi.org/10.1016/j.resmic.2007.07.006
  29. Andreou L-V. Isolation of plasmid DNA from bacteria. Methods in Enzymology. 2013;529:135–142. https://doi.org/10.1016/B978-0-12-418687-3.00010-0
  30. Esteban-Torres M, Ruiz L, Sanchez-Gallardo R, van Sinderen D. Isolation of chromosomal and plasmid DNA from bifidobacteria. Methods in Molecular Biology. 2021;2278:21–29. https://doi.org/10.1007/978-1-0716-1274-3_3
  31. Plata CA, Marni S, Maritan A, Bellini T, Suweis S. Statistical physics of DNA hybridization. Physical Review E. 202;103(4). https://doi.org/10.1103/PhysRevE.103.042503
  32. Oliveira J, Mahony J, Hanemaaijer L, Kouwen TRHM, van Sinderen D. Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. Journal of Dairy Science. 2018;101(1):96–105. https://doi.org/10.3168/jds.2017-13403
  33. Lavelle K, Murphy J, Fitzgerald B, Lugli GA, Zomer A, Neve H, et al. Decade of Streptococcus thermophilus phage evolution in an Irish dairy plant. Applied and Environmental Microbiology. 2018;84(10). https://doi.org/10.1128/AEM.02855-17
  34. Chmielewska- Jeznach V, Bardowski JK, Szczepankowska AK. Molecular, physiological and phylogenetic traits of Lactococcus 936-type phages from distinct dairy environments. Scientific Reports. 2018;8(1). https://doi.org/10.1038/s41598-018-30371-3
  35. Chen X, Guo J, Liu Y, Chai S, Ma R, Munguntsetseg B. Characterization and adsorption of a Lactobacillus plantarum virulent phage. Journal of Dairy Science. 2019;102(5):3879–3886. https://doi.org/10.3168/jds.2018-16019
  36. Eller MR, Dias RS, de Moraes CA, de Carvalho AF, Oliveira LL, Silva EAM, et al. Molecular characterization of a new lytic bacteriophage isolated from cheese whey. Archives of Virology. 2021;157(12):2265–2272. https://doi.org/10.1007/s00705-012-1432-6
  37. Greer GG, Dilts BD, Ackermann H-W. Characterization of a Leuconostoc gelidum bacteriophage from pork. I International Journal of Food Microbiology. 2007;114(3):370–375. https://doi.org/10.1016/j.ijfoodmicro.2006.09.021
  38. Pringsulaka O, Patarasinpaiboon N, Suwannasai N, Atthakor W, Rangsiruji A. Isolation and characterisation of a novel Podoviridae-phage infecting Weissella cibaria N 22 from Nham, a Thai fermented pork sausage. Food Microbiology. 2011;28(3):518–525. https://doi.org/10.1016/j.fm.2010.10.011
How to quote?
About journal

Download
Contents
Abstract
Keywords
References