ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Pempek Fishcake from Channa micropeltes with Pumpkin Puree: Quality Assessment

Pempek is an authentic traditional dish of Indonesian cuisine. As a popular food, it needs to be both tasty and nutritious. Mashed pumpkin can add some health-beneficial properties to the traditional pempek and reduce its carbohydrate content. This research featured pempek made of farmed toman fish (Channa micropeltes), which is an affordable raw material. The research objective was to evaluate the consumer acceptance of the experimental pempek based on its sensory assessment and a folding test. This research also revealed the proximate composition, β-carotene, and amino acids in the pempek samples.
The research procedure included the following stages: making pumpkin puree; making pempek by substituting tapioca flour with pumpkin puree (control: 0%, Formulation 1: 10%, Formulation 2: 20%); sensory assessment and folding test; proximate analysis; β-carotene analysis; and amino acid analysis.
A greater proportion of pumpkin puree improved the appearance, color, aroma, flavor, and texture values of the experimental sample. Based on the folding test, the elasticity of pempek decreased as the pumpkin share increased. Pumpkin puree improved the quality of pempek in terms of its protein, moisture, ash, carbohydrate, β-carotene, and amino acid composition. Formulation 2 with 20% of tapioca flour substituted with pumpkin puree showed the best results for protein (7.91%) and amino acids (10.27%), as well as the lowest carbohydrate content (26.76%).
Mashed pumpkin proved to be an excellent substitute of tapioca flour in the traditional Indonesian pempek fishcake as it improved both its sensory profile and nutritional value.
Giant snakehead, Channa micropeltes, toman fish, pempek, pumpkin, nutritional value, β-carotene, amino acids
The authors received the DIPA Fund of Lambung Mangkurat University (LMU) in 2022 (No. SP DIPA - 023.17.2. 6777518/2022), according to Chancellor's Decree No. 458/UN8/PG/2022, LMU and Ministry of Education, Culture, Research and Technology, Republic of Indonesia.
  1. Fadhallah EG, Nurainy F, Suroso E. Sensory, chemical and physical characteristic of pempek from barred mackerel and barracuda fish in various formulations. Jurnal Penelitian Pertanian Terapan. 2021;21(1):16–23. (In Indonesian).
  2. Sugito S, Hayati S. The use of gabus (ophicepallus strianus blkr) fillet fish and application of freezing in making gluten pempek. Jurnal Ilmu-Ilmu Pertanian Indonesia. 2006;8(2):147–151. (In Indonesian).
  3. Talib A, Marlena T. Organoleptic and chemical characteristics of skipjack tuna empek-empek products. Agrikan Jurnal Agribisnis Perikanan. 2015;8(1):50–59. (In Indonesian).
  4. Rofiq M, Ernawati. The proportion of tapioca flour addition on the quality pempek old boiling fish eels (Monopterus albus). Teknologi Pangan: Media Informasi dan Komunikasi Ilmiah Teknologi Pertanian. 2017;8(1):9‒16. (In Indonesian).
  5. Aminullah, Daniel, Rohmayanti T. The texture and hedonic profiles of pempek lenjer made from local commodities of bogor taro flour (Colocasia esculenta L. Schott) and African catfish (Clarias gariepinus). Jurnal Teknologi and Industri Hasil Pertanian. 2020;25(1):7‒18. (In Indonesian).
  6. Astuti MP, Haryati S, Subjatimah, M. Characteristic of empek-empek with different types of freshwater fish. Jurnal Mahasiswa, Food Technologi and Agricultural Product. 2021. (In Indonesian).
  7. Ansyari P. Slamat. Food characteristics of Indonesian snakehead in Danau Panggang monotonous swamp, South Kalimantan. Warta Iktiologi. 2020;4(2):27‒33. (In Indonesian).
  8. Fitriyani E, Nuraenah N, Deviarni IM. Comparison of chemical composition, fatty acids, amino acids of toman fish (Channa micropeltes) and snakehead fish (Channa striata) from West Kalimantan waters. Manfish Journal. 2020;1(2):71‒82. (In Indonesian).
  9. Nurilmala M, Safithri M, Pradita FT, Pertiwi RM. Protein profile of striped snakehead (Channa striata), giant snakehead (Channa micropeltes), and marble goby (Oxyeleotris marmorata). Jurnal Pengolahan Hasil Perikanan Indonesia. 2020;23(3):548‒557. (In Indonesian).
  10. Asikin AN, Kusumaningrum I. Edible portion and chemical composition of snakehead fish from pond cultivation in Kutai Kartanegara Regency, East Kalimantan. Ziraa’ah. 2017;42(3):158‒163. (In Indonesian).
  11. Agustin A, Aishah A. Analysis of the effect of price on purchasing decisions at Pempek Pasar 26 ilir Palembang. Jurnal Pariwisata Darussalam. 2021;1(1):9‒15. (In Indonesian).
  12. Syamsir E, Hariyadi P, Fardiaz D, Andarwulan N, Kusnandar F. Characterization of tapioca from five varieties Manihot utilisima Crantz from Lampung. Jurnal Agroteknologi. 2020;5(1):93‒105. (In Indonesian).
  13. Burke M. Carbohydrate intolerance and disaccharidase measurement – a mini review. Clinical Biochemist Reviews. 2019;40(4):167–174.
  14. Ceclu L, Mocanu DG, Nistor OV. Pumpkin – health benefits. Journal of Agroalimentary Processes and Technologies. 2020;26(3):241‒246.
  15. Habiba U, Robin MA, Hasan MM, Toma MA, Akhter D, Mazumder MAR. Nutritional, textural, and sensory quality of bars enriched with banana flour and pumpkin seed flour. Foods and Raw Materials. 2021;9(2):282–289.
  16. Bergantin C, Maietti A, Tedeschi P, Font G, Manyes L, Marchett N. HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “Delica” (Cucurbita maxima) and “Violina” (Cucurbita moschata) pumpkins as food traceability markers. Molecules. 2018;23(11).
  17. Seo JS, Burri BJ, Quan Z, Neidlinger TR. Extraction and chromatography of carotenoids from pumpkin. Journal of Chromatography A. 2005;1073(1–2):371‒375.
  18. Al-Anoos IM, El-dengawi RAH, Hasanin HA. Studies on chemical composition of some Egyptian and Chinese pumpkin (Cucurbita maxima) seed varieties. Journal of Plant Science and Research. 2005;2(2).
  19. McCreight JD. Cultivation, and uses of cucurbits. In: Grumet R, Katzir N, Garcia-Mas J, editors. Genetics and genomics of cucurbitaceae. Cham: Springer; 2017. pp. 1–12.
  20. Kulkarni AS, Joshi DC. Effect of replacement of wheat flour with pumpkin powder on textural and sensory qualities of biscuit. International Food Research Journal. 2013;20(2):587‒591.
  21. Miranti MG, Kristiastuti D, Kusumasari ED. Formulation of biscuit using yellow pumpkin flour and the addition of coconut flour as an alternative for complementary feeding. Journal of Agro Science. 2019;7(1):41‒47.
  22. Ratnawati L, Indrianti N, Ekafitri R, Mayasti NKI. The effect of addition pumpkin and carrot puree on the physicochemical and textural properties of mocaf biscuit as complementary food. IOP Conference Series: Earth and Environmental Science. 2021;733.
  23. Pramono YB, Nurwantoro, Handayani D, Mulyani S, Wibowo CH. Physical, chemical, stickiness, and organoleptic characteristics of analog white sweet potato rice with the addition of pumpkin flours. IOP Conference Series: Earth and Environmental Science. 2021;803.
  24. Husna SS, Hintono A, Rizqiat H. Texture, water absorption, aw and hedonic quality flakes white millet (Panicum miliaceum) with addition of pumpkin flour (Cucurbita moschata). Journal of Applied Food Technology. 2020;7(2):29‒32.
  25. Pongjanta J, Naulbunrang A, Kawngdang S, Manon T, Thepjaikat T. Utilization of pumpkin powder in bakery products. Songklanakarin Journal of Science and Technology. 2006;28:71‒79.
  26. Wijayanti I, Santoso J, Jacoeb AM. The effect of leaching times on the gel properties of catfish (Clarias gariepinus) surimi. Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology. 2012;8(1):32‒37. (In Indonesian).
  27. Palawe J, Talete TK, Tatinting N, Tanod WA, Mandeno JA, Rieuwpassa FJ, et al. High calcium sago cookies fortification of tuna fish bone and seaweed Caulerpa sp. EnviroScienteae. 2021;17(3):106‒115. (In Indonesian).
  28. Varzakas T, Kiokias S. HPLC analysis and determination of carotenoid pigments in commercially available plant extracts. Current Research in Nutrition and Food Science. 2016;4(1):1‒14.
  29. Rieuwpassa FJ, Karimela EJ, Cahyono E, Tomasoa AM, Ansar NMS, Tanod WA, et al. Extraction and characterization of fish protein concentrate from Tilapia (Oreochromis niloticus). Food Research. 2022;6(4):92–99.
  30. Putri CYK, Pranata FS, Swasti YR. The quality of muffin with a combination of white kepok banana (Musa paradisiaca forma typica) and butternut pumpkin (Cucurbita moschata). Biota: Jurnal Ilmiah Ilmu-Ilmu Hayati. 2019;4(2):50‒62. (In Indonesian).
  31. Zuraida N, Supriati Y. Sweet potato farming as sources for food alternative and carbohydrate diversification. Buletin AgroBio. 2001;4(1):13‒23. (In Indonesian).
  32. Pudjihastuti I, Sumardiono S, Supriyo E, Kusmayanti H. Quality analog rice composite flour: Modified starch, colocasia esculenta, Canna edulis Ker high protein. AIP Conference Proceedings. 2018;1977.
  33. Mamuja CF, Lamaega JChE. Production of analog rice from cassava, “Goroho” banana and sago. Jurnal Ilmu dan Teknologi Pangan. 2015;3(2):8‒14. (In Indonesian).
  34. Putra GH, Nurali EJN, Koapaha T, Lalujan LE. Manufacture of analog rice based on goroho banana flour (Musa acuminate) with carboxymethyl cellulose (CMC) binder. Cocos. 2013;2(4):1‒12. (In Indonesian).
  35. Cahyaningtyas FI, Basito, Anam C. The physicochemical and sensory assessment of pumpkin flour (Curcubita moschata Durch) as the substitution of wheat flour in the eggroll making. Jurnal Teknosains Pangan. 2014;3(2):13‒19. (In Indonesian).
  36. Ningtyas KR. Optimize formulation the breakfast meal flakes (food breakfast) bananas with the addition of pumpkins. Jurnal Pengolahan Pangan. 2018;3(2):32‒27. (In Indonesian).
  37. Ririsanti NN, Liviawaty E, Ihsan YN, Pratama RI. The addition of carrageenan to the preference level of catfish pempek. Jurnal Perikanan dan Kelautan. 2017;VIII(1):165‒173. (In Indonesian).
  38. Chakrabarti R, Gupta S. Characteristics of gel from the meat of twelve species of fish from Visakhapatnam Coast. Fishery Technology. 2000;37(1):5‒7.
  39. Maulid DY, Nurilmala M. DNA barcoding for authentication of mackerel (Scomberomorus sp) products. Jurnal Akuatika Indonesia. 2015;VI(2):154–160. (In Indonesian).
  40. Pereira AM, Krumreich FD, Ramos AH, Krolow ACR, Santos RB, Gularte MA. Physicochemical characterization, carotenoid content and protein digestibility of pumpkin access flours for food application. Food Science and Technology. 2020;40(2):691‒698.
  41. Simpson BK. Food biochemistry and food processing. Oxford: Wiley-Blackwell; 2012. 912 p.
  42. Kim MY, Kim EJ, Kim Y-N, Choi C, Lee B-H. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutrition Research and Practice. 2012;6(1):21‒27.
  43. Nilusha RAT, Jayasinghe JMJK, Perera ODAN, Perera PIP, Jayasingh CVL. Proximate composition, physicochemical, functional, and antioxidant properties of flours from selected cassava (Manihot esculenta Crantz) varieties. International Journal of Food Science. 2021;2021.
  44. Dwijaya O, Lestari S, Hanggita S. Chemical characteristics and potential heavy metal contamination (Pb and Cd) of pempek in Palembang. FishtecH – Jurnal Teknologi Hasil Perikanan. 2015;4(1):57‒66. (In Indonesian).
  45. Bhat MA, Bhat A. Study on physico-chemical characteristics of pumpkin blended cake. Journal of Food Processing and Technology. 2013;4(9).
  46. Adebayo OR, Farombi AG, Oyekanmi AM. Proximate, mineral and anti-nutrient evaluation of pumpkin pulp (Cucurbita pepo). IOSR Journal of Applied Chemistry. 2013;4(5):25‒28.
  47. Chen L, Huang G. Antioxidant activities of phosphorylated pumpkin polysaccharide. International Journal of Biological Macromolecules. 2019;125:256‒261.
  48. Dhiman AK, Sharma KD, Surekha A. Functional constituents, and processing of pumpkin: A review. Journal of Food Science and Technology. 2009;46(5):411‒417.
  49. Nururrahmah, Widiarnu W. Analysis of beta-carotene levels of dragon fruit peels using a UV-VIS spectrophotometer. Jurnal Dinamika. 2013;4(1):15‒26. (In Indonesian).
  50. Omeire GC. Amino acid profile of raw and extruded blends of African yam bean (Sphenostylis stenocarpa) and cassava flour. American Journal of Food and Nutrition. 2012;2(3):65‒68.
  51. Duan Y, Li F, Li Y, Tang Y, Kong X, Feng Z, et al. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids. 2015;48:41–51.
  52. Pedroso JAB, Zampieri TT, Donato JrJ. Reviewing the effects of l-leucine supplementation in the regulation of food intake, energy balance, and glucose homeostasis. Nutrients. 2015;7(5):3914‒3937.
  53. Layman DK. The role of leucine in weight loss diets and glucose homeostasis. The Journal of Nutrition. 2003;133(1):261S‒267S.
  54. Duan Y, Li F, Liu H, Li Y, Liu Y, Kong X, et al. Nutritional and regulatory roles of leucine in muscle growth and fat reduction. Frontiers in Bioscience. 2015;20(4):796–813.
  55. Pillai RR, Kurpad AV. Amino acid requirements in children and the elderly population. British Journal of Nutrition. 2012;108(S2):S44‒S49.
  56. Jinap S, Hajeb P. Glutamate. Its applications in food and contribution to health. Appetite. 2010;55(1):1–10.
  57. Chen JQ, Li YS, Li ZJ, Lu HX, Zhu PQ, Li CM. Dietary L-arginine supplementation improves semen quality and libido of boars under high ambient temperature. Animal. 2018;12(8):1611–1620.
  58. Qiu Y, Yang X, Wang L, Gao K, Jiang Z. L-Arginine inhibited inflammatory response and oxidative stress induced by lipopolysaccharide via arginase-1 signaling in IPEC-J2 cells. International Journal of Molecular Sciences. 2019;20(7).
  59. Szlas A, Kurek JM, Krejpcio Z. The potential of L-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism – A review. Nutrients. 2022;14(5).
  60. Cylwik D, Mogielnicki A, Buczko W. L-arginine and cardiovascular system. Pharmacological Reports. 2005;57(1):14‒22.
  61. Goli P, Yazdi M, Heidari-Beni M, Kelishadi R. Growth hormone response to L-arginine alone and combined with different doses of growth hormone-releasing hormone: A systematic review and meta-analysis. International Journal of Endocrinology. 2022;2022.
  62. Gould A, Naidoo C, Candy GP. Arginine metabolism and wound healing. Wound Healing Southern Africa. 2008;1(1):48‒50.
  63. Sumarli, Rosmaiyadi, Triani SN, Kamaruddin, Buyung, Marhayani DA, et al. Toman fish nugget making training for the Kumba Village community in the Indonesia-Malaysia border region. International Journal of Public Devotion. 2021;4(2):69–74. (In Indonesian).
  64. Restu. Making meatball of toman fish (Channa micropeltes). Journal of Tropical Animal Science. 2012;1(1):15–19. (In Indonesian).
  65. Hermanto, Susanty A. Physicochemical and sensory characteristics of biscuit with toman fish (Channa micropeltes) flour addition. Jurnal Riset Teknologi Industri. 2020;14(2):253–262. (In Indonesian).
  66. Yusuf AM, Saelan E, Lestari S. The effect of additional yellow pump with different persentages on organoleptic characteristics of chicken sausage. JANHUS Journal of Animal Husbandry Science. 2021;5(2):195–203. (In Indonesian).
  67. Dewi AAEK. The effect of the pumpkin addition (Cucurbita moschata) on organoleptic quality, antioxidant capacity and nutrition value of wet noodles. Denpasar: Department of Nutrition, Politeknik Kesehatan, Ministry of Health; 2020. (In Indonesian).
  68. Arisandi VS. Test of protein and organoleptic levels in yellow pumpkin (Cucurbita moschata) cake with the addition of natural dye). Surakarta: Muhammadiyah Surakarta University; 2012. (In Indonesian).
How to quote?
Adawyah R, Dekayanti T, Aslamiah A, Wahyu AS M, Puspitasari F. Pempek Fishcake from Channa micropeltes with Pumpkin Puree: Quality Assessment. Food Processing: Techniques and Technology. 2023;53(3):465–474. 
About journal