ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Native Microbiota of Rapeseed Cake as Potential Source of Industrial Producers

Abstract
Rapeseed oil production is very active in Russia. Its main by-product is cake: its chemical composition and availability make it an excellent source of nutrients in microbial cultivation to be used as biologically active compounds or as part of functional products. The research objective was to study the native microbiota of rapeseed cake under conditions of high humidity, as well as to describe the morphology of isolated microorganisms and determine their genera by NGS sequencing.
The study featured rapeseed cake and microbial colonies isolated after 2, 5, 7, and 9 days of fermentation. The microbial isolates were obtained by the method of surface and deep cultivation on solid and liquid nutrient media, respectively. The metagenomic analysis of the microbial taxonomy involved sequencing on the Illumina platform.
The experiment revealed 16 types of colonies with different morphology. Colonies with morphology 1, 3, 8, 12, and 13 were predominant for all fermentation periods, which means that they grew as isolates during the liquid-phase fermentation. The metagenomic analysis revealed at least 28 genera of bacteria in the rapeseed cake suspensions. The highest percentage belonged to Weisella (≤ 45.8% on day 2), Acinetobacter (≤ 40.6% on day 7), Lactobacillus (≤ 15.7% on day 5), Leuconostoc (≤ 15.1% on day 7), Enterococcus (≤ 14.6% on day 5), and Paenibacillus (≤ 16.3% on day 9).
The obtained isolates could be of interest as industrial producers of useful metabolites, e.g., enzymes, pigments, organic acids, etc. Further research will identify the microbial species, their useful properties, and optimal cultivation conditions.
Keywords
Rapeseed, cake, food production waste, native microbiota, fermentation, microorganisms-producers
FUNDING
The research was part of FGUS-2022-0003 research topic, State Assignment No. 075-01190-22-00 to the All-Russian Research Institute for Food Additives (VNIIPD).
REFERENCES
  1. Renzyaeva TV, Renzyaev AO, Kravtchenko SN, Reznichenko IYu. Capabilities of rapeseed oilcake as food raw materials. Storage and Processing of Farm Products. 2020;(2):143–160. (In Russ.). https://doi.org/10.36107/spfp.2020.213; https://www.elibrary.ru/SJPZJK
  2. Bagnani M, Ehrengruber S, Soon WL, Peydayesh M, Miserez A, Mezzenga R. Rapeseed Cake valorization into bioplastics based on protein amyloid fibrils. Advanced Materials Technologies. 2022;8(3):2200932. https://doi.org/10.1002/admt.202200932
  3. Sousa D, Salgado JM, Cambra-López M, Dias A, Belo I. Biotechnological valorization of oilseed cakes: Substrate optimization by simplex centroid mixture design and scale-up to tray bioreactor. Biofuels, Bioproducts and Biorefining. 2022;17(1):121–134. https://doi.org/10.1002/bbb.2428
  4. Zhou T, Chen L, Wang W, Xu Y, Zhang W, Zhang H, et al. Effects of application of rapeseed cake as organic fertilizer on rice quality at high yield level. Journal of the Science of Food and Agriculture. 2022;102(5):1832–1841. https://doi.org/10.1002/jsfa.11518
  5. Fu H, Li H, Yin P, Mei H, Li J, Zhou P, et al. Integrated application of rapeseed cake and green manure enhances soil nutrients and microbial communities in tea garden soil. Sustainability. 2021;13(5):2967. https://doi.org/10.3390/su13052967
  6. Paciorek-Sadowska J, Borowicz M, Isbrandt M, Czupryński B, Apiecionek Ł. The use of waste from the production of rapeseed oil for obtaining of new polyurethane composites. Polymers. 2019;11(9):1431. https://doi.org/10.3390/polym11091431
  7. Joseph C, Savoire R, Harscoat-Schiavo C, Pintori D, Monteil J, Faure C, et al. Redispersible dry emulsions stabilized by plant material: Rapeseed press-cake or cocoa powder. LWT. 2019;113;108311. https://doi.org/10.1016/j.lwt.2019.108311
  8. Joseph C, Savoire R, Harscoat-Schiavo C, Pintori D, Monteil J, Faure C, et al. Pickering emulsions stabilized by various plant materials: Cocoa, rapeseed press cake and lupin hulls. LWT. 2020;130:109621. https://doi.org/10.1016/j.lwt.2020.109621
  9. Tian Y, Zhou Y, Kriisa M, Anderson M, Laaksonen O, Kütt M-L, et al. Effects of fermentation and enzymatic treatment on phenolic compounds and soluble proteins in oil press cakes of canola (Brassica napus). Food Chemistry. 2023;409:135339. https://doi.org/10.1016/j.foodchem.2022.135339
  10. Sousa D, Simões L, Oliveira R, Salgado JM, Cambra-López M, Belo I, et al. Evaluation of biotechnological processing through solid-state fermentation of oilseed cakes on extracts bioactive potential. Biotechnology Letters. 2023;45:1293–1307. https://doi.org/10.1007/s10529-023-03417-4
  11. Wagner C, Bonte A, Brühl L, Niehaus K, Bednarz H, Matthäus B. Microorganisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil. Journal of the Science of Food and Agriculture. 2017;98(6):2147–2155. https://doi.org/10.1002/jsfa.8699
  12. Lysak VV, Zheldakova RA, Fomina OV. Workshop in microbiology. Minsk: Belarusian State University; 2015. 115 p. (In Russ.).
  13. Galperin MY. Genome diversity of spore-forming Firmicutes. Microbiology Spectrum. 2013;1(2). https://doi.org/10.1128/microbiolspectrum.tbs-0015-2012
  14. Seong CN, Kang JW, Lee JH, Seo SY, Woo JJ, Park C, et al. Taxonomic hierarchy of the phylum Firmicutes and novel Firmicutes species originated from various environments in Korea. Journal of Microbiology. 2018;56:1–10. https://doi.org/10.1007/s12275-018-7318-x
  15. Popescu SC, Tomaso-Peterson M, Wilkerson T, Bronzato-Badial A, Wesser U, Popescu GV. Metagenomic analyses of the soybean root mycobiome and microbiome reveal signatures of the healthy and diseased plants affected by taproot decline. Microorganisms. 2022;10(5):856. https://doi.org/10.3390/microorganisms10050856
  16. Simonin M, Briand M, Chesneau G, Rochefort A, Marais C, Sarniguet A, et al. Seed microbiota revealed by a large-scale meta-analysis including 50 plant species. New Phytologist. 2022;234(4):1448–1463. https://doi.org/10.1111/nph.18037
  17. Klūga A, Dubova L, Alsiņa I, Rostoks N. Alpha-, gamma- and beta-proteobacteria detected in legume nodules in Latvia, using full-length 16S rRNA gene sequencing. Acta Agriculturae Scandinavica, Section B – Soil ans Plant Science. 2023;73(1):127–141. https://doi.org/10.1080/09064710.2023.2232681
  18. Kersters K, de Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E. Introduction to the Proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes. Vol. 5: Proteobacteria: Alpha and beta subclasses. New York: Springer; 2006. pp. 3–37. https://doi.org/10.1007/0-387-30745-1_1
  19. Floc’h, J-B, Hamel C, Newton Lupwayi, Neil Harker K, Hijri M, St-Arnaud M. Bacterial communities of the canola rhizosphere: Network analysis reveals a core bacterium shaping microbial interactions. Frontiers in Microbiology. 2020;11:1587. https://doi.org/10.3389/fmicb.2020.01587
  20. Wink J, Mohammadipanah F, Hamedi J. Biology and biotechnology of actinobacteria. Cham: Springer; 2017. 395 p. https://doi.org/10.1007/978-3-319-60339-1
  21. Javed Z, Tripathi GD, Mishra M, Dashora K. Actinomycetes – The microbial machinery for the organic-cycling, plant growth, and sustainable soil health. Biocatalysis and Agricultural Biotechnology. 2021;31;101893. https://doi.org/10.1016/j.bcab.2020.101893
  22. Berman JJ. Class Bacilli plus class Clostridia. In: Berman JJ, editor. Taxonomic guide to infectious diseases. Academic Press; 2012. pp. 65–71. https://doi.org/10.1016/B978-0-12-415895-5.00012-X
  23. Muntean D, Horhat F-G, Bădițoiu L, Dumitrașcu V, Bagiu I-C, Horhat D-I, et al. Multidrug-resistant gram-negative Bacilli: A retrospective study of trends in a tertiary healthcare unit. Medicina. 2018;54(6):92. https://doi.org/10.3390/medicina54060092
  24. Hebishy E, Yerlikaya O, Mahony J, Akpinar A, Saygili D. Microbiological aspects and challenges of whey powders – I thermoduric, thermophilic and spore-forming bacteria. International Journal of Dairy Technology. 2023;76(4):779–800. https://doi.org/10.1111/1471-0307.13006
  25. Dame ZT, Rahman M, Islam T. Bacilli as sources of agrobiotechnology: recent advances and future directions. Green Chemistry Letters and Reviews. 2021;14(2):246–271. https://doi.org/10.1080/17518253.2021.1905080
  26. Du Y, Zou W, Zhang Ka, Ye G, Yang J. Advances and applications of Clostridium co-culture systems in biotechnology. Frontiers in Microbiology. 2020;11:560223. https://doi.org/10.3389/fmicb.2020.560223
  27. Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Applied Microbiology and Biotechnology. 2021;105:3533–3557. https://doi.org/10.1007/s00253-021-11289-9
  28. Zhang Q, Zhang Z, Lu T, Yu Y, Penuelas J, Zhu Y-G, et al. Gammaproteobacteria, a core taxon in the guts of soil fauna, are potential responders to environmental concentrations of soil pollutants. Microbiome. 2021;9:196. https://doi.org/10.1186/s40168-021-01150-6
  29. Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: A common factor in human diseases. BioMed Research International. 2017;2017:9351507. https://doi.org/10.1155/2017/9351507
  30. Muñoz-Gómez SA, Hess S, Burger G, Franz Lang B, Susko E, Slamovits CH, et al. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. eLife. 2019;8:e42535. https://doi.org/10.7554/eLife.42535
  31. Ahirwar NK, Singh R, Chaurasia S, Chandra R, Prajapati S, Ramana S. Effective role of beneficial microbes in achieving the sustainable agriculture and eco-friendly environment development goals: A review. Frontiers in Environmental Microbiology. 2020;5(6):111–123. https://doi.org/10.11648/j.fem.20190506.12
  32. Lee N-K, Kim W-S, Paik H-D. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Science and Biotechnology. 2019;28:1297–1305. https://doi.org/10.1007/s10068-019-00691-9
  33. Koilybayeva M, Shynykul Z, Ustenova G, Abzaliyeva S, Alimzhanova M, Amirkhanova A, et al. Molecular characterization of some Bacillus species from vegetables and evaluation of their antimicrobial and antibiotic potency. Molecules. 2023;28(7):3210. https://doi.org/10.3390/molecules28073210
  34. Kumar R, Goomber S, Kaur J. Engineering lipases for temperature adaptation: Structure function correlation. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics. 2019;1867(11):140261. https://doi.org/10.1016/j.bbapap.2019.08.001
  35. Contreras GA, Munita JM, Arias CA. Novel strategies for the management of vancomycin-resistant Enterococcal infections. Current Infectious Disease Reports. 2019;21:22. https://doi.org/10.1007/s11908-019-0680-y
  36. Hassan SE-D, Abdel-Rahman MA, Roushdy MM, Azab MS, Gaber MA. Effective biorefinery approach for lactic acid production based on co-fermentation of mixed organic wastes by Enterococcus durans BP130. Biocatalysis and Agricultural Biotechnology. 2019;20:101203. https://doi.org/10.1016/j.bcab.2019.101203
  37. Wang Y, Chan K-L, Abdel-Rahman MA, Sonomoto K, Leu S-Y. Dynamic simulation of continuous mixed sugar fermentation with increasing cell retention time for lactic acid production using Enterococcus mundtii QU 25. Biotechnology for Biofuels and Bioproducts. 2020;13:112. https://doi.org/10.1186/s13068-020-01752-6
  38. Divyashree S, Anjali PG, Somashekaraiah R, Sreenivasa MY. Probiotic properties of Lactobacillus casei – MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnology Reports. 2021;32:e00672. https://doi.org/10.1016/j.btre.2021.e00672
  39. Riaz Rajoka MS, Wu Y, Mehwish HM, Bansal M, Zhao L. Lactobacillus exopolysaccharides: New perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends in Food Science and Technology. 2020;103:36–48. https://doi.org/10.1016/j.tifs.2020.06.003
  40. Guan C, Tao Z, Wang L, Zhao R, Chen X, Huang X, et al. Isolation of novel Lactobacillus with lipolytic activity from the vinasse and their preliminary potential using as probiotics. AMB Express. 2020;10:91. https://doi.org/10.1186/s13568-020-01026-2
  41. Zikmanis P, Brants K, Kolesovs S, Semjonovs P. Extracellular polysaccharides produced by bacteria of the Leuconostoc genus. World Journal of Microbiology and Biotechnology. 2020;36:161. https://doi.org/10.1007/s11274-020-02937-9
  42. Leeuwendaal NK, Stanton C, O’Toole PW, Beresford TP. Fermented foods, health and the gut microbiome. Nutrients. 2022;14(7):1527. https://doi.org/10.3390/nu14071527
  43. Sukohidayat NHE, Zarei M, Baharin BS, Manap MY. Purification and characterization of lipase produced by Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 using an aqueous two-phase system (ATPS) composed of Triton X-100 and maltitol. Molecules. 2018;23(7):1800. https://doi.org/10.3390/molecules23071800
  44. Teixeira CG, da Silva RR, Fusieger A, Martins E, de Freitas R, de Carvalho AF. The Weissella genus in the food industry: A review. Research, Society and Development. 2021;10(5):e8310514557. https://doi.org/10.33448/rsd-v10i5.14557
  45. Kavitake D, Devi PB, Shetty PH. Overview of exopolysaccharides produced by Weissella genus – A review. International Journal of Biological Macromolecules. 2020;164:2964–2973. https://doi.org/10.1016/j.ijbiomac.2020.08.185
  46. Xue H, Tu Y, Ma T, Jiang N, Piao C, Li Y. Taxonomic study of three novel Paenibacillus species with cold-adapted plant growth-promoting capacities isolated from root of Larix gmelinii. Microorganisms. 2023;11(1):130. https://doi.org/10.3390/microorganisms11010130
  47. do Couto MTT, da Silva AV, Sobral RVS, Rodrigues CH, da Cunha MNC, Leite ACL, et al. Production, extraction and characterization of a serine protease with fibrinolytic, fibrinogenolytic and thrombolytic activity obtained by Paenibacillus graminis. Process Biochemistry. 2022;118:335–345. https://doi.org/10.1016/j.procbio.2022.05.005
  48. Nguyen DL, Hwang J, Kim EJ, Lee JH, Han SJ. Production and characterization of a recombinant cold-active acetyl Xylan esterase from psychrophilic Paenibacillus sp. R4 strain. Applied Biochemistry and Microbiology. 2022;58:428–434. https://doi.org/10.1134/S0003683822040123
  49. Li C-J, Zhang Z, Zhan P-C, Lv A-P, Li P-P, Liu L, et al. Comparative genomic analysis and proposal of Clostridium yunnanense sp. nov., Clostridium rhizosphaerae sp. nov., and Clostridium paridis sp. nov., three novel Clostridium sensu stricto endophytes with diverse capabilities of acetic acid and ethanol production. Anaerobe. 2023;79:102686. https://doi.org/10.1016/j.anaerobe.2022.102686
  50. de Brito Bezerra PKS, de Azevedo JCS, dos Santos ES. Biobutanol production by batch and fed-batch fermentations from the green coconut husk hydrolysate using C. beijerinckii ATCC 10132. Biomass Conversion and Biorefinery. 2023. https://doi.org/10.1007/s13399-023-04537-7
  51. Mills SA, Gelbard MK. Sixty years in the making: Collagenase Clostridium histolyticum, from benchtop to FDA approval and beyond. World Journal of Urology. 2020;38:269–277. https://doi.org/10.1007/s00345-019-02818-3
  52. Le VV, Ko S-R, Kang M, Park C-Y, Lee S-A, Oh H-M, et al. The cyanobactericidal bacterium Paucibacter aquatile DH15 caused the decline of Microcystis and aquatic microbial community succession: A mesocosm study. Environmental Pollution. 2022;311:119849. https://doi.org/10.1016/j.envpol.2022.119849
  53. Santos AA, Soldatou S, de Magalhães VF, Azevedo SMFO, Camacho-Muñoz D, Lawton LA. Degradation of multiple peptides by microcystin-degrader Paucibacter toxinivorans (2C20). Toxins. 2021;13(4):265. https://doi.org/10.3390/toxins13040265
  54. Bunmadee S, Teeka J, Lomthong T, Kaewpa D, Areesirisuk P, Areesirisuk A. Isolation and identification of a newly isolated lipase-producing bacteria (Acinetobacter baumannii RMUTT3S8-2) from oily wastewater treatment pond in a poultry processing factory and its optimum lipase production. Bioresource Technology Reports. 2022;20:101267. https://doi.org/10.1016/j.biteb.2022.101267
  55. Kim TI, Ki KS, Lim DH, Vijayakumar M, Park SM, Choi SH, et al. Novel Acinetobacter parvus HANDI 309 microbial biomass for the production of N-acetyl-β-d-glucosamine (GlcNAc) using swollen chitin substrate in submerged fermentation. Biotechnology for Biofuels and Bioproducts. 2017;10:59. https://doi.org/10.1186/s13068-017-0740-1
  56. Reddy AR, Peele KA, Krupanidhi S, Prabhakar KV, Venkateswarulu TC. Production of polyhydroxybutyrate from Acinetobacter nosocomialis RR20 strain using modified mineral salt medium: a statistical approach. International Journal of Environmental Science and Technology. 2019;16:6447–6452. https://doi.org/10.1007/s13762-018-2102-3
How to quote?
Sverdlova OP, Podshivalova EV, Sharova NYu, Belova DD. Native Microbiota of Rapeseed Cake as Potential Source of Industrial Producers. Food Processing: Techniques and Technology. 2024;54(2):245–260. (In Russ.). https://doi.org/10.21603/2074-9414-2024-2-2504 
About journal

Download
Contents
Abstract
Keywords
Funding
References