ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Microbial Biofortification of Grain Crops: Current State and Prospects

Abstract
Hidden hunger is a significant social issue in numerous countries worldwide, causing the development of nutrition-related diseases among populations annually. Biofortification offers a sustainable solution as it combines methods of cross-breeding, genetic engineering, agriculture, and microbiology. The authors reviewed international studies in the field of microbial biofortification in order to assess the microbial potential to enh ance the essential element content in grain crops. The review featured relevant scientific articles published by foreign experts in Scopus, ScienceDirect, and Google Scholar in 1984–2024. The keywords included biofortification, wheat, rice, oats, growth stimulation, antagonism, and phytopathogen. The sources were processed in Zotero and VOSviewer. Nitrogen fixation and nutrient solubilization are the main mechanisms of microbial biofortification. Solubilization occurs as a synthesis of organic and inorganic acids, protons, siderophores, extracellular enzymes, and other secondary metabolites. Microorganisms can improve the expression of plant genes in terms of absorption and nutrient accumulation. They also affect root systems, facilitating the extraction of nutrients from the soil. The authors summarized laboratory and field studies on microbial biofortification of rice, wheat, and barley with iron, selenium, zinc, copper, manganese, nitrogen, phosphorus, and potassium. Biofortified growth-promoting microorganisms are a sustainable, reliable, and cost-effective approach to food security and hidden hunger issues. The review offers relevant information that can be used to develop new microbial preparations for the domestic agriculture.
Keywords
Nutrients, hidden hunger, agriculture, microorganisms, nitrogen, phosphorus, zinc, iron
REFERENCES
  1. Smith MR, Myers SS. Impact of anthropogenic CO2 emissions on global human nutrition. Nature Climate Change. 2018;8:834–839. https://doi.org/10.1038/s41558-018-0253-3
  2. Harding KL, Aguayo VM, Webb P. Hidden hunger in South Asia: A review of recent trends and persistent challenges. Public Health Nutrition. 2018;21(4):785–795. https://doi.org/10.1017/S1368980017003202
  3. Lowe NM. The global challenge of hidden hunger: Perspectives from the field. Proceedings of the Nutrition Society. 2021;80(3):283–289. https://doi.org/10.1017/S0029665121000902
  4. Debnath S, Mandal B, Saha S, Sarkar D, Batabyal K, Murmu S, et al. Are the modern-bred rice and wheat cultivars in India inefficient in zinc and iron sequestration? Environmental and Experimental Botany. 2021;189:104535. https://doi.org/10.1016/j.envexpbot.2021.104535
  5. Davis DR. Declining fruit and vegetable nutrient composition: What is the evidence? HortScience. 2009;44(1):15–19. https://doi.org/10.21273/HORTSCI.44.1.15
  6. Murphy KM, Reeves PG, Jones SS. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica. 2008;163:381–390. https://doi.org/10.1007/s10681-008-9681-x
  7. Kumar A, Choudhary AK, Pooniya V, Suri VK, Singh U. Soil factors associated with micronutrient acquisition in crops- biofortification perspective. In: Singh U, Praharaj CS, Singh SS, Singh NP, editors. Biofortification of food crops. New Delhi: Springer; 2016. pp. 159–176. https://doi.org/10.1007/978-81-322-2716-8_13
  8. Bouis HE, Welch RM. Biofortification – A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science. 2010;50(S1):S-20–S-32. https://doi.org/10.2135/cropsci2009.09.0531
  9. Hefferon KL. Can biofortified crops help attain food security? Current Molecular Biology Reports. 2016;2:180–185. https://doi.org/10.1007/s40610-016-0048-0
  10. Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, et al. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition. 2018;5:12. https://doi.org/10.3389/fnut.2018.00012
  11. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science. 2000;287(5451):303–305. https://doi.org/10.1126/science.287.5451.303
  12. Amanullah, Saleem A, Iqbal A, Fahad S. Foliar phosphorus and zinc application improve growth and productivity of maize (Zea mays L.) under moisture stress conditions in semi-arid climates. Journal of Microbial and Biochemical Technology. 2016;8(5):433–439. https://doi.org/10.4172/1948-5948.1000321
  13. Steckling SM, Ribeiro ND, Arns FD, Mezzomo HC, Possobom MTDF. Genetic diversity and selection of common bean lines based on technological quality and biofortification. Genetics and Molecular Research. 2017;16(1). https://doi.org/10.4238/gmr16019527
  14. Andersson MS, Saltzman A, Virk PS, Pfeiffer WH. Progress update: Crop development of biofortified staple food crops under HarvestPlus. African Journal of Food, Agriculture, Nutrition and Development. 2017;17(02):11905–11935. https://doi.org/10.18697/ajfand.78.HarvestPlus05
  15. Velu G, Singh R, Balasubramaniam A, Mishra VK, Chand R, Tiwari C, et al. Reaching out to farmers with high zinc wheat varieties through public-private partnerships – An experience from Eastern-Gangetic plains of India. Advances in Food Technology and Nutritional Sciences. 2015;1(3):73–75. https://doi.org/10.17140/AFTNSOJ-1-112
  16. Sendhil R, Cariappa AGA, Ramasundaram P, Gupta V, Gopalareddy K, Gupta OP, et al. Biofortification in wheat: Research progress, potential impact, and policy imperatives. SSRN Journal. 2022. https://doi.org/10.2139/ssrn.4087960
  17. Virk PS, Andersson MS, Arcos J, Govindaraj M, Pfeiffer WH. Transition from targeted breeding to mainstreaming of biofortification traits in crop improvement programs. Frontiers in Plant Science. 2021;12:703990. https://doi.org/10.3389/fpls.2021.703990
  18. Vinoth A, Ravindhran R. Biofortification in millets: A sustainable approach for nutritional security. Frontiers in Plant Science. 2017;8:29. https://doi.org/10.3389/fpls.2017.00029
  19. Cakmak I, Kutman UB. Agronomic biofortification of cereals with zinc: A review. European Journal of Soil Science. 2018;69(1):172–180. https://doi.org/10.1111/ejss.12437
  20. Bhardwaj AK, Chejara S, Malik K, Kumar R, Kumar A, Yadav RK. Agronomic biofortification of food crops: An emerging opportunity for global food and nutritional security. Frontiers in Plant Science. 2022;13:1055278. https://doi.org/10.3389/fpls.2022.1055278
  21. Patle PN, Kadu PR, Gabhane AR, Pharande AL, Bhagat AP, Bhoyar SM, et al. Consequences provoked due to excess application of agrochemical on soil health deterioration – A review for Sustainable Agriculture. Journal of Pharmacognosy and Phytochemistry. 2019;8(2S):63–66.
  22. Abou Hussien EA, Abou-Baker NH, Abou Al Fotoh MSM, Kotb EKM. Change of some soil physical properties in newly re-claimed soils following poor soil management: A case study in Al-Qasasin, Egypt. Asian Journal of Soil Science and Plant Nutrition. 2022;8(3):41–53. https://doi.org/10.9734/ajsspn/2022/v8i3161
  23. Singh B. Are nitrogen fertilizers deleterious to soil health? Agronomy. 2018;8(4):48. https://doi.org/10.3390/agronomy8040048
  24. Beltran-Garcia MJ, Martínez-Rodríguez A, Olmos-Arriaga I, Valdes-Salas B, Di Mascio P, White JF. Nitrogen fertilization and stress factors drive shifts in microbial diversity in soils and plants. Symbiosis. 2021;84:379–390. https://doi.org/10.1007/s13199-021-00787-z
  25. Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, et al. Phosphorus dynamics: From soil to plant. Plant Physiology. 2011;156(3):997–1005. https://doi.org/10.1104/pp.111.175232
  26. Walpola BC, Yoon M-H. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Research. 2012;6(37):6600–6605. https://doi.org/10.5897/AJMR12.889
  27. Etesami H. Enhanced phosphorus fertilizer use efficiency with microorganisms. In: Meena RS, editor. Nutrient dynamics for sustainable crop production. Singapore: Springer; 2020. pp. 215–245. https://doi.org/10.1007/978-981-13-8660-2_8
  28. Mariano E, Leite JM, Megda MXV, Torres‐Dorante L, Trivelin PCO. Influence of nitrogen form supply on soil mineral nitrogen dynamics, nitrogen uptake, and productivity of sugarcane. Agronomy Journal. 2015;107(2):641–650. https://doi.org/10.2134/agronj14.0422
  29. Hardoim PR, Andreote FD, Reinhold-Hurek B, Sessitsch A, van Overbeek LS, van Elsas JD. Rice root-associated bacteria: Insights into community structures across 10 cultivars. FEMS Microbiology Ecology. 2011;77(1):154–164. https://doi.org/10.1111/j.1574-6941.2011.01092.x
  30. van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters. 2008;11(3):296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
  31. Rana A, Saharan B, Nain L, Prasanna R, Shivay YS. Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Science and Plant Nutrition. 2012;58(5):573–582. https://doi.org/10.1080/00380768.2012.716750
  32. Ilyas M, Nisar M, Khan N, Hazrat A, Khan AH, Hayat K, et al. Drought tolerance strategies in plants: A mechanistic approach. Journal of Plant Growth Regulation. 2021;40:926–944. https://doi.org/10.1007/s00344-020-10174-5
  33. Morgenstern E, Okon Y. The effect of Azospirillum brasilense and auxin on root morphology in seedlings of Sorghum bicolor × Sorghum sudanense. Arid Soil Research and Rehabilitation. 1987;1(2):115–127. https://doi.org/10.1080/15324988709381135
  34. Lakshmanan V, Selvaraj G, Bais HP. Functional soil microbiome: Belowground solutions to an aboveground problem. Plant Physiology. 2014;166(2):689–700. https://doi.org/10.1104/pp.114.245811
  35. Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL. Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology. 2017;38:155–63. https://doi.org/10.1016/j.pbi.2017.04.018
  36. Kumar A, Dubey A. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. Journal of Advanced Research. 2020;24:337–352. https://doi.org/10.1016/j.jare.2020.04.014
  37. Tarkka MT, Drigo B, Deveau A. Mycorrhizal microbiomes. Mycorrhiza. 2018;28:403–409. https://doi.org/10.1007/s00572-018-0865-5
  38. Serazetdinova YuR, Fotina NV, Asyakina LK, Prosekov AYu, Neverova OA. The role of Bacillus amyloliquefaciens in reducing the abiotic stress of cereals. XXI Century: Resumes of the Past and Challenges of the Present Plus. 2023;12(4):178–183. (In Russ.). https://elibrary.ru/LBKHMF
  39. Ramírez-Puebla ST, Hernández MAR, Guerrero Ruiz G, Ormeño-Orrillo E, Martinez-Romero JC, Servín-Garcidueñas LE, et al. Nodule bacteria from the cultured legume Phaseolus dumosus (belonging to the Phaseolus vulgaris cross-inoculation group) with common tropici phenotypic characteristics and symbiovar but distinctive phylogenomic position and chromid. Systematic and Applied Microbiology. 2019;42(3):373–382. https://doi.org/10.1016/j.syapm.2018.12.007
  40. Oldroyd GED, Leyser O. A plant’s diet, surviving in a variable nutrient environment. Science. 2020;368(6486):eaba0196. https://doi.org/10.1126/science.aba0196
  41. Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology. 2018;16:263–276. https://doi.org/10.1038/nrmicro.2018.9
  42. Stokstad E. The nitrogen fix. Science. 2016;353(6305):1225–1227. https://doi.org/10.1126/science.353.6305.1225
  43. King CA, Purcell LC. Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiology. 2005;137(4):1389–1396. https://doi.org/10.1104/pp.104.056317
  44. Liu Y, Wu L, Baddeley JA, Watson CA. Models of biological nitrogen fixation of legumes. In: Lichtfouse E, Hamelin M, Navarrete M, Debaeke P, editors. Sustainable agriculture. Volume 2. Dordrecht: Springer; 2011. pp. 883–905. https://doi.org/10.1007/978-94-007-0394-0_39
  45. Graham PH, Vance CP. Legumes: Importance and constraints to greater use. Plant Physiology. 2003;131(3):872–877. https://doi.org/10.1104/pp.017004
  46. Bishop PE, Joerger RD. Genetics and molecular biology of alternative nitrogen fixation systems. Annual Review of Plant Biology. 1990;41:109–125. https://doi.org/10.1146/annurev.pp.41.060190.000545
  47. Burén S, Rubio LM. State of the art in eukaryotic nitrogenase engineering. FEMS Microbiology Letters. 2018;365(2):fnx274. https://doi.org/10.1093/femsle/fnx274
  48. dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics. 2012;13:162. https://doi.org/10.1186/1471-2164-13-162
  49. McGlynn SE, Boyd ES, Peters JW, Orphan VJ. Classifying the metal dependence of uncharacterized nitrogenases. Frontiers in Microbiology. 2013;3:419. https://doi.org/10.3389/fmicb.2012.00419
  50. Spaink HP. Root nodulation and infection factors produced by rhizobial bacteria. Annual Review of Microbiology. 2000;54:257–288. https://doi.org/10.1146/annurev.micro.54.1.257
  51. Dénarié J, Debellé F, Promé J-C. Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annual Review of Microbiology. 1996;65:503–535. https://doi.org/10.1146/annurev.bi.65.070196.002443
  52. Szczyglowski K, Shaw RS, Wopereis J, Copeland S, Hamburger D, Kasiborski B, et al. Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Molecular Plant-Microbe Interactions. 1998;11(7):684–697. https://doi.org/10.1094/MPMI.1998.11.7.684
  53. Timmers ACJ, Auriac M-C, Truchet G. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development. 1999;126(16):3617–3628. https://doi.org/10.1242/dev.126.16.3617
  54. Oldroyd GED, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics. 2011;45:119–144. https://doi.org/10.1146/annurev-genet-110410-132549
  55. Oldroyd GED. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology. 2013;11:252–263. https://doi.org/10.1038/nrmicro2990
  56. Reid CPP, Crowley DE, Kim HJ, Powell PE, Szaniszlo PJ. Utilization of iron by oat when supplied as ferrated synthetic chelate or as ferrated hydroxamate siderophore. Journal of Plant Nutrition. 1984;7(1–5):437–447. https://doi.org/10.1080/01904168409363210
  57. Ahmed E, Holmström SJM. Siderophores in environmental research: Roles and applications. Microbial Biotechnology. 2014;7(3):196–208. https://doi.org/10.1111/1751-7915.12117
  58. Desai A, Archana G. Role of siderophores in crop improvement. In: Maheshwari DK, editor. Bacteria in agrobiology: Plant nutrient management. Heidelberg: Springer Berlin; 2011. pp. 109–139. https://doi.org/10.1007/978-3-642-21061-7_6
  59. Alaylar B, Egamberdieva D, Gulluce M, Karadayi M, Arora NK. Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World Journal of Microbiology and Biotechnology. 2020;36:93. https://doi.org/10.1007/s11274-020-02870-x
  60. Boiteau RM, Mende DR, Hawco NJ, McIlvin MR, Fitzsimmons JN, Saito MA, et al. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proceedings of the National Academy of Sciences. 2016;113(50):14237–14242. https://doi.org/10.1073/pnas.1608594113
  61. Sullivan JT, Jeffery EF, Shannon JD, Ramakrishnan G. Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. Journal of Bacteriology. 2006;188(11):3785–3795. https://doi.org/10.1128/JB.00027-06
  62. Mumtaz MZ, Ahmad M, Jamil M, Hussain T. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiological Research. 2017;202:51–60. https://doi.org/10.1016/j.micres.2017.06.001
  63. Gopalakrishnan S, Vadlamudi S, Samineni S, Sameer Kumar CV. Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. SpringerPlus. 2016;5:1882. https://doi.org/10.1186/s40064-016-3590-6
  64. Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP. Plant growth-promoting traits in Enterobacter cloacae subsp. dissolvens MDSR9 isolated from soybean rhizosphere and its impact on growth and nutrition of soybean and wheat upon inoculation. Agricultural Research. 2014;3:53–66. https://doi.org/10.1007/s40003-014-0100-3
  65. Pellegrino E, Bedini S. Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biology and Biochemistry. 2014;68:429–439. https://doi.org/10.1016/j.soilbio.2013.09.030
  66. Whiting SN, de Souza MP, Terry N. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspicaerulescens. Environmental Science and Technology. 2001;35(15):3144–3150. https://doi.org/10.1021/es001938v
  67. Mastropasqua MC, D’Orazio M, Cerasi M, Pacello F, Gismondi A, Canini A, et al. Growth of Pseudomonas aeruginosa in zinc poor environments is promoted by a nicotianamine‐related metallophore. Molecular Microbiology. 2017;106(4):543–561. https://doi.org/10.1111/mmi.13834
  68. Lhospice S, Gomez NO, Ouerdane L, Brutesco C, Ghssein G, Hajjar C, et al. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline. Scientific Reports. 2017;7:17132. https://doi.org/10.1038/s41598-017-16765-9
  69. Goteti PK, Emmanuel LDA, Desai S, Shaik MHA. Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). International Journal of Microbiology. 2013;2013:869697. https://doi.org/10.1155/2013/869697
  70. Saravanan VS, Kalaiarasan P, Madhaiyan M, Thangaraju M. Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita. Letters in Applied Microbiology. 2007;44(3):235–241. https://doi.org/10.1111/j.1472-765X.2006.02079.x
  71. Saravanan VS, Madhaiyan M, Thangaraju M. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere. 2007;66(9):1794–1798. https://doi.org/10.1016/j.chemosphere.2006.07.067
  72. Sunithakumari K, Padma Devi SN, Vasandha S. Zinc solubilizing bacterial isolates from the agricultural fields of coimbatore, Tamil Nadu, India. Current Science. 2016;110(2):196. https://doi.org/10.18520/cs/v110/i2/196-205
  73. Li WC, Ye ZH, Wong MH. Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant and Soil. 2010;326:453–467. https://doi.org/10.1007/s11104-009-0025-y
  74. Sah S, Singh N, Singh R. Iron acquisition in maize (Zea mays L.) using Pseudomonas siderophore. 3 Biotech. 2017;7:121. https://doi.org/10.1007/s13205-017-0772-z
  75. Kushwaha P, Srivastava R, Pandiyan K, Singh A, Chakdar H, Kashyap PL, et al. Enhancement in plant growth and zinc biofortification of chickpea (Cicer arietinum L.) by Bacillus altitudinis. Journal of Soil Science and Plant Nutrition. 2021;21:922–935. https://doi.org/10.1007/s42729-021-00411-5
  76. Dinesh R, Srinivasan V, Hamza S, Sarathambal C, Anke Gowda SJ, Ganeshamurthy AN, et al. Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, soil available Zn and plant Zn content. Geoderma. 2018;321:173–186. https://doi.org/10.1016/j.geoderma.2018.02.013
  77. Fasim F, Ahmed N, Parsons R, Gadd GM. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters. 2002;213(1):1–6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x
  78. Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC. Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. Journal of Soil Science and Plant Nutrition. 2014;14(4):889–910. https://doi.org/10.4067/S0718-95162014005000071
  79. Costerousse B, Schönholzer-Mauclaire L, Frossard E, Thonar C. Identification of heterotrophic zinc mobilization processes among bacterial strains isolated from wheat rhizosphere (Triticum aestivum L.). Applied and Environmental Microbiology. 2018;84(1):e01715-17. https://doi.org/10.1128/AEM.01715-17
  80. Costa LEDO, Corrêa TLR, Teixeira JA, Araújo EFD, Queiroz MV. Endophytic bacteria isolated from Phaseolus vulgaris produce phytases with potential for biotechnology application. Brazilian Journal of Biological Sciences. 2018;5(11):657–671. https://doi.org/10.21472/bjbs.051105
  81. Abbaszadeh-Dahaji P, Masalehi F, Akhgar A. Improved growth and nutrition of sorghum (Sorghum bicolor) plants in a low-fertility calcareous soil treated with plant growth–promoting rhizobacteria and Fe-EDTA. Journal of Soil Science and Plant Nutrition. 2020;20:31–42. https://doi.org/10.1007/s42729-019-00098-9
  82. Shrivastava M, Srivastava PC, D’Souza SF. Phosphate-solubilizing microbes: Diversity and phosphates solubilization mechanism. In: Meena VS, editor. Role of rhizospheric microbes in soil. Singapore: Springer; 2018. pp. 137–165. https://doi.org/10.1007/978-981-13-0044-8_5
  83. Florentino AP, Weijma J, Stams AJM, Sánchez-Andrea I. Ecophysiology and application of acidophilic sulfur-reducing microorganisms. In: Rampelotto PH, editor. Biotechnology of extremophiles. Cham: Springer; 2016. pp. 141–175. https://doi.org/10.1007/978-3-319-13521-2_5
  84. Roy S, Roy M. Characterization of plant growth promoting feature of a neutromesophilic, facultatively chemolithoautotrophic, sulphur oxidizing bacterium Delftia sp. strain SR4 isolated from coal mine spoil. International Journal of Phytoremediation. 2019;21(6):531–540. https://doi.org/10.1080/15226514.2018.1537238
  85. Parks EJ, Olson GJ, Brinckman FE, Baldi F. Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. Journal of Industrial Microbiology. 1990;5(2–3):183–189. https://doi.org/10.1007/BF01573868
  86. Illmer P, Schinner F. Solubilization of inorganic calcium phosphates – Solubilization mechanisms. Soil Biology and Biochemistry. 1995;27(3):257–263. https://doi.org/10.1016/0038-0717(94)00190-C
  87. Gaind S. Phosphate dissolving fungi: Mechanism and application in alleviation of salt stress in wheat. Microbiological Research. 2016;193:94–102. https://doi.org/10.1016/j.micres.2016.09.005
  88. Sharan A, Shikha, Darmwal NS. Efficient phosphorus solubilization by mutant strain of Xanthomonas campestris using different carbon, nitrogen and phosphorus sources. World Journal of Microbiology and Biotechnology. 2008;24:3087–3090. https://doi.org/10.1007/s11274-008-9807-2
  89. Park K-H, Lee C-Y, Son H-J. Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Letters in Applied Microbiology. 2009;49(2):222–228. https://doi.org/10.1111/j.1472-765X.2009.02642.x
  90. Jarosch KA, Doolette AL, Smernik RJ, Tamburini F, Frossard E, Bünemann EK. Characterisation of soil organic phosphorus in NaOH-EDTA extracts: A comparison of 31P NMR spectroscopy and enzyme addition assays. Soil Biology and Biochemistry. 2015;91:298–309. https://doi.org/10.1016/j.soilbio.2015.09.010
  91. Singh P, Banik RM. Effect of purified alkaline phosphatase from Bacillus licheniformis on growth of Zea mays L. Plant Science Today. 2019;6(sp1):583–589. https://doi.org/10.14719/pst.2019.6.sp1.676
  92. Della Mónica IF, Godeas AM, Scervino JM. In vivo modulation of arbuscular mycorrhizal symbiosis and soil quality by fungal P solubilizers. Microbial Ecology. 2020;79:21–29. https://doi.org/10.1007/s00248-019-01396-6
  93. Richardson AE. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology. 2001;28(9):897–906. https://doi.org/10.1071/PP01093
  94. Xia X, Wu S, Li N, Wang D, Zheng S, Wang G. Novel bacterial selenite reductase CsrF responsible for Se(IV) and Cr(VI) reduction that produces nanoparticles in Alishewanella sp. WH16-1. Journal of Hazardous Materials. 2018;342:499–509. https://doi.org/10.1016/j.jhazmat.2017.08.051
  95. Avendaño R, Chaves N, Fuentes P, Sánchez E, Jiménez JI, Chavarría M. Production of selenium nanoparticles in Pseudomonas putida KT2440. Scientific Reports. 2016;6:37155. https://doi.org/10.1038/srep37155
  96. Trivedi G, Patel P, Saraf M. Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. South African Journal of Botany. 2020;134:27–35. https://doi.org/10.1016/j.sajb.2019.10.001
  97. Hrynkiewicz K, Ciesielska A, Haug I, Baum C. Ectomycorrhiza formation and willow growth promotion as affected by associated bacteria: Role of microbial metabolites and use of C sources. Biology and Fertility of Soils. 2010;46:139–150. https://doi.org/10.1007/s00374-009-0419-2
  98. Artursson V, Finlay RD, Jansson JK. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology. 2006;8(1):1–10. https://doi.org/10.1111/j.1462-2920.2005.00942.x
  99. Calomme MR, van den Branden K, Vanden Berghe DA. Selenium and Lactobacillus species. Journal of Applied Bacteriology. 1995;79(3):331–340. https://doi.org/10.1111/j.1365-2672.1995.tb03145.x
  100. Butler CS, Debieux CM, Dridge EJ, Splatt P, Wright M. Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochemical Society Transactions. 2012;40(6):1239–1243. https://doi.org/10.1042/BST20120087
  101. Sura-de Jong M, Reynolds RJB, Richterova K, Musilova L, Staicu LC, Chocholata I, et al. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Frontiers in Plant Science. 2015;6:113. https://doi.org/10.3389/fpls.2015.00113
  102. Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, et al. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiology and Biochemistry. 2016;105:162–173. https://doi.org/10.1016/j.plaphy.2016.04.025
  103. Sun Z, Liu K, Zhang J, Zhang Y, Xu K, Yu D, et al. IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L. seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant and Soil. 2017;419:1–11. https://doi.org/10.1007/s11104-017-3218-9
  104. Liu C, Ravnskov S, Liu F, Rubæk GH, Andersen MN. Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. The Journal of Agricultural Science. 2018;156(1):46–58. https://doi.org/10.1017/S0021859618000023
  105. Zhang H, Sun Y, Xie X, Kim M-S, Dowd SE, Paré PW. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. The Plant Journal. 2009;58(4):568–577. https://doi.org/10.1111/j.1365-313X.2009.03803.x
  106. Kamarudin AN, Seman IA, Balia Yusof ZN. Thiamine biosynthesis gene expression analysis in Elaeis guineensis during interactions with Hendersonia toruloidea. Journal of Oil Palm Research. 2017;29(2):218–226. https://doi.org/10.21894/jopr.2017.2902.06
  107. Garcia-Seco D, Zhang Y, Gutierrez-Mañero FJ, Martin C, Ramos-Solano B. Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS ONE. 2015;10(11):e0142639. https://doi.org/10.1371/journal.pone.0142639
  108. Singh D, Geat N, Rajawat MVS, Mahajan MM, Prasanna R, Singh S, et al. Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. Journal of Plant Growth Regulation. 2018;37:174–182. https://doi.org/10.1007/s00344-017-9716-4
  109. Singh D, Geat N, Rajawat MVS, Prasanna R, Kar A, Singh AM, et al. Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content. Annals of Microbiology. 2018;68:815–833. https://doi.org/10.1007/s13213-018-1388-1
  110. Majumder S, Datta K, Datta SK. Rice biofortification: High iron, zinc, and vitamin-A to fight against “hidden hunger”. Agronomy. 2019;9(12):803. https://doi.org/10.3390/agronomy9120803
  111. Prasanna BM, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T, et al. Molecular breeding for nutritionally enriched maize: Status and prospects. Frontiers in Genetics. 2020;10:1392. https://doi.org/10.3389/fgene.2019.01392
  112. Sakellariou M, Mylona PV. New uses for traditional crops: The case of barley biofortification. Agronomy. 2020;10(12):1964. https://doi.org/10.3390/agronomy10121964
  113. Huang C, Wang H, Shi X, Wang Y, Li P, Yin H, et al. Two new selenite reducing bacterial isolates from paddy soil and the potential Se biofortification of paddy rice. Ecotoxicology. 2021;3:1465–1475. https://doi.org/10.1007/s10646-020-02273-6
  114. Yadav R, Ror P, Rathore P, Ramakrishna W. Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. Plant Physiology and Biochemistry. 2020;150:222–233. https://doi.org/10.1016/j.plaphy.2020.02.039
  115. Durán P, Acuña JJ, Jorquera MA, Azcón R, Borie F, Cornejo P, et al. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. Journal of Cereal Science. 2013;57(3):275–280. https://doi.org/10.1016/j.jcs.2012.11.012
  116. Singh J, Singh AV, Upadhayay VK, Khan A, Chandra R. Prolific contribution of Pseudomonas protegens in Zn biofortification of wheat by modulating multifaceted physiological response under saline and non-saline conditions. World Journal of Microbiology and Biotechnology. 2022;38:227. https://doi.org/10.1007/s11274-022-03411-4
  117. Sarkar D, Rakshit A. Bio-priming in combination with mineral fertilizer improves nutritional quality and yield of red cabbage under Middle Gangetic Plains, India. Scientia Horticulturae. 2021;283:110075. https://doi.org/10.1016/j.scienta.2021.110075
  118. Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Applied Soil Ecology. 2014;73:87–96. https://doi.org/10.1016/j.apsoil.2013.08.009
  119. Rana A, Kabi SR, Verma S, Adak A, Pal M, Shivay YS, et al. Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro- and micronutrients in grains in rice–wheat cropping sequence. Cogent Food and Agriculture. 2015;1(1):1037379. https://doi.org/10.1080/23311932.2015.1037379
  120. Singh D, Prasanna R, Sharma V, Rajawat MVS, Nishanth S, Saxena AK. Prospecting plant–microbe interactions for enhancing nutrient availability and grain biofortification. In: Gupta OP, Pandey V, Narwal S, Sharma P, Ram S, Singh GP, editors. Wheat and barley grain biofortification. Woodhead Publishing; 2020. pp. 203–228. https://doi.org/10.1016/B978-0-12-818444-8.00008-0
  121. Sun Z, Yue Z, Liu H, Ma K, Li C. Microbial-assisted wheat iron biofortification using endophytic Bacillus altitudinis WR10. Frontiers in Nutrition. 2021;8:704030. https://doi.org/10.3389/fnut.2021.704030
  122. Abat M, McLaughlin MJ, Kirby JK, Stacey SP. Adsorption and desorption of copper and zinc in tropical peat soils of Sarawak, Malaysia. Geoderma. 2012;175–176:58–63. https://doi.org/10.1016/j.geoderma.2012.01.024
  123. Acuña JJ, Jorquera MA, Barra PJ, Crowley DE, de la Luz Mora M. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biology and Fertility of Soils. 2013;49:175–185. https://doi.org/10.1007/s00374-012-0705-2
  124. Sharma SK, Sharma MP, Ramesh A, Joshi OP. Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. Journal of Microbiology and Biotechnology. 2012;22(3):352–359. https://doi.org/10.4014/jmb.1106.05063
  125. Rana A, Joshi M, Prasanna R, Shivay YS, Nain L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology. 2012;50:118–126. https://doi.org/10.1016/j.ejsobi.2012.01.005
  126. Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK. Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant and Soil. 2017;416:107–116. https://doi.org/10.1007/s11104-017-3189-x
  127. Sirohi G, Upadhyay A, Srivastava PS, Srivastava S. PGPR mediated Zinc biofertilization of soil and its impact on growth and productivity of wheat. Journal of Soil Science and Plant Nutrition. 2015;15(1):202–216. https://doi.org/10.4067/S0718-95162015005000017
  128. Prasanna R, Bidyarani N, Babu S, Hossain F, Shivay YS, Nain L. Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food and Agriculture. 2015;1(1):998507. https://doi.org/10.1080/23311932.2014.998507
  129. Yasin M, El-Mehdawi AF, Pilon-Smits EAH, Faisal M. Selenium-fortified wheat: Potential of microbes for biofortification of selenium and other essential nutrients. International Journal of Phytoremediation. 2015;17(8):777–786. https://doi.org/10.1080/15226514.2014.987372
  130. Patel P, Trivedi G, Saraf M. Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environmental Sustainability. 2018;1:357–365. https://doi.org/10.1007/s42398-018-00031-3
  131. Yousaf A, Qadir A, Anjum T, Ahmad A. Identification of microbial metabolites elevating vitamin contents in barley seeds. Journal of Agricultural and Food Chemistry. 2015;63(32):7304–7310. https://doi.org/10.1021/acs.jafc.5b01817
  132. Asyakina LK, Isachkova OA, Kolpakova DE, Borodina EE, Boger VYu, Prosekov AYu. The effect of a microbial consortium on spring barley growth and development in the Kemerovo region, Kuzbass. Grain Economy of Russia. 2024;16(1):104–112. (In Russ.). https://doi.org/10.31367/2079-8725-2024-90-1-104-112
  133. Glick BR. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. 2012;2012:963401. https://doi.org/10.6064/2012/963401
  134. Rashid S, Charles TC, Glick BR. Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology. 2012;61:217–224. https://doi.org/10.1016/j.apsoil.2011.09.011
  135. Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek. 2014;106:85–125. https://doi.org/10.1007/s10482-013-0095-y
  136. Apine OA, Jadhav JP. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. Journal of Applied Microbiology. 2011;110(5):1235–1244. https://doi.org/10.1111/j.1365-2672.2011.04976.x
  137. Dellagi A, Quillere I, Hirel B. Beneficial soil-borne bacteria and fungi: A promising way to improve plant nitrogen acquisition. Journal of Experimental Botany. 2020;71(15):4469–4479. https://doi.org/10.1093/jxb/eraa112
  138. Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, et al. vanishing tassel2 Encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. The Plant Cell. 2011;23:550–566. https://doi.org/10.1105/tpc.110.075267
  139. Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regulation. 2015;75:391–404. https://doi.org/10.1007/s10725-014-0013-y
  140. Khan AL, Waqas M, Kang S-M, Al-Harrasi A, Hussain J, Al-Rawahi A, et al. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology. 2014;52:689–695. https://doi.org/10.1007/s12275-014-4002-7
  141. Nett RS, Montanares M, Marcassa A, Lu X, Nagel R, Charles TC, et al. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nature Chemical Biology. 2017;13:69–74. https://doi.org/10.1038/nchembio.2232
  142. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I-J. Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology. 2015;35(1):62–74. https://doi.org/10.3109/07388551.2013.800018
  143. Bömke C, Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry. 2009;70(15–16):1876–1893. https://doi.org/10.1016/j.phytochem.2009.05.020
  144. Bhore SJ, Nithya R, Loh CY. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation. 2010;5(5):191–197. https://doi.org/10.6026/97320630005191
  145. Asyakina LK, Serazetdinova YuR, Frolova AS, Fotina NV, Neverova OA, Petrov AN. Antagonistic activity of extremophilic bacteria against phytopathogens in agricultural crops. Food Processing: Techniques and Technology. 2023;53(3):565–575. https://doi.org/10.21603/2074-9414-2023-3-2457
  146. Köhl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science. 2019;10:845. https://doi.org/10.3389/fpls.2019.00845
  147. Yin X, Li T, Jiang X, Tang X, Zhang J, Yuan L, et al. Suppression of grape white rot caused by Coniella vitis using the potential biocontrol agent Bacillus velezensis GSBZ09. Pathogens. 2022;11(2):248. https://doi.org/10.3390/pathogens11020248
  148. Chenniappan C, Narayanasamy M, Daniel GM, Ramaraj GB, Ponnusamy P, Sekar J, et al. Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biological Control. 2019;129:55–64. https://doi.org/10.1016/j.biocontrol.2018.07.002
  149. Anand A, Chinchilla D, Tan C, Mène-Saffrané L, L’Haridon F, Weisskopf L. Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans. Microorganisms. 2020;8(8):1144. https://doi.org/10.3390/microorganisms8081144
  150. Lee SH, Jeon SH, Park JY, Kim DS, Kim JA, Jeong HY, et al. Isolation and evaluation of the antagonistic activity of Cnidium officinale rhizosphere bacteria against phytopathogenic fungi (Fusarium solani). Microorganisms. 2023;11(6):1555. https://doi.org/10.3390/microorganisms11061555
  151. Báez-Astorga PA, Cázares-Álvarez JE, Cruz-Mendívil A, Quiroz-Figueroa FR, Sánchez-Valle VI, Maldonado-Mendoza IE. Molecular and biochemical characterisation of antagonistic mechanisms of the biocontrol agent Bacillus cereus B25 inhibiting the growth of the phytopathogen Fusarium verticillioides P03 during their direct interaction in vitro. Biocontrol Science and Technology. 2022;32(9):1074–1094. https://doi.org/10.1080/09583157.2022.2085662
  152. Agarwal H, Dowarah B, Baruah PM, Bordoloi KS, Krishnatreya DB, Agarwala N. Endophytes from Gnetum gnemon L. can protect seedlings against the infection of phytopathogenic bacterium Ralstonia solanacearum as well as promote plant growth in tomato. Microbiological Research. 2020;238:126503. https://doi.org/10.1016/j.micres.2020.126503
  153. Putri RE, Mubarik NR, Ambarsari L, Wahyudi AT. Antagonistic activity of glucanolytic bacteria Bacillus subtilis W3.15 against Fusarium oxysporum and its enzyme characterization. Biodiversitas. 2021;22(9):4067–4077. https://doi.org/10.13057/biodiv/d220956
  154. Rosier A, Pomerleau M, Beauregard PB, Samac DA, Bais HP. Surfactin and Spo0A-dependent antagonism by Bacillus subtilis strain UD1022 against Medicago sativa phytopathogens. Plants. 2023;12(5):1007. https://doi.org/10.3390/plants12051007
  155. Saechow S, Thammasittirong A, Kittakoop P, Prachya S, Thammasittirong SN-R. Antagonistic activity against dirty panicle rice fungal pathogens and plant growth-promoting activity of Bacillus amyloliquefaciens BAS23. Journal of Microbiology and Biotechnology. 2018;28(9):1527–1535. https://doi.org/10.4014/jmb.1804.04025
  156. Choub V, Won S-J, Ajuna HB, Moon J-H, Choi S-I, Lim H-I, et al. Antifungal activity of volatile organic compounds from Bacillus velezensis CE 100 against Colletotrichum gloeosporioides. Horticulturae. 2022;8(6):557. https://doi.org/10.3390/horticulturae8060557
  157. Evangelista-Martínez Z. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World Journal of Microbiology and Biotechnology. 2014;30:1639–1647. https://doi.org/10.1007/s11274-013-1568-x
  158. Fira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology. 2018;285:44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044
  159. Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, et al. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Applied and Environmental Microbiology. 2017;83(19):e01075-17. https://doi.org/10.1128/AEM.01075-17
  160. Zhang L, Sun C. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Applied and Environmental Microbiology. 2018;84(18):e00445-18. https://doi.org/10.1128/AEM.00445-18
  161. Sarrocco S, Esteban P, Vicente I, Bernardi R, Plainchamp T, Domenichini S, et al. Straw competition and wheat root endophytism of Trichoderma gamsii T6085 as useful traits in the bio-ogical control of fusarium head blight. Phytopathology®. 2021;111(7):1129–1136. https://doi.org/10.1094/PHYTO-09-20-0441-R
  162. di Francesco A, Baraldi E. How siderophore production can influence the biocontrol activity of Aureobasidium pullulans against Monilinia laxa on peaches. Biological Control. 2021;152:104456. https://doi.org/10.1016/j.biocontrol.2020.104456
  163. Asghari S, Harighi B, Ashengroph M, Clement C, Aziz A, Esmaeel Q, et al. Induction of systemic resistance to Agrobacterium tumefaciens by endophytic bacteria in grapevine. Plant Pathology. 2020;69(5):827–837. https://doi.org/10.1111/ppa.13175
  164. Fontana DC, de Paula S, Torres AG, de Souza VHM, Pascholati SF, Schmidt D, et al. Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens. 2021;10(5):570. https://doi.org/10.3390/pathogens10050570
  165. Wu L, Huang Z, Li X, Ma L, Gu Q, Wu H, et al. Stomatal closure and SA-, JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. Frontiers in Microbiology. 2018;9:847. https://doi.org/10.3389/fmicb.2018.00847
  166. Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, et al. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Molecular Plant-Microbe Interactions. 2015;28(9):984–995. https://doi.org/10.1094/MPMI-03-15-0066-R
  167. Nie P, Chen C, Yin Q, Jiang C, Guo J, Zhao H, et al. Function of miR825 and miR825* as negative regulators in Bacillus cereus AR156-elicited systemic resistance to Botrytis cinerea in Arabidopsis thaliana. International Journal of Molecular Sciences. 2019;20(20):5032. https://doi.org/10.3390/ijms20205032
  168. Lakkis S, Trotel-Aziz P, Rabenoelina F, Schwarzenberg A, Nguema-Ona E, Clément C, et al. Strengthening grapevine resistance by Pseudomonas fluorescens PTA-CT2 relies on distinct defense pathways in susceptible and partially resistant genotypes to downy mildew and gray mold diseases. Frontiers in Plant Science. 2019;10:1112. https://doi.org/10.3389/fpls.2019.01112
  169. Li Y, Guo Q, Li Y, Sun Y, Xue Q, Lai H. Streptomyces pactum Act12 controls tomato yellow leaf curl virus disease and alters rhizosphere microbial communities. Biology and Fertility of Soils. 2019;55:149–69. https://doi.org/10.1007/s00374-019-01339-w
  170. Tjamos SE, Flemetakis E, Paplomatas EJ, Katinakis P. Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Molecular Plant-Microbe Interactions. 2005;18(6):555–561. https://doi.org/10.1094/MPMI-18-0555
  171. Ahmad T, Bashir A, Farooq S, Riyaz‐Ul‐Hassan S. Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm‐rot caused by Fusarium oxysporum. Journal of Applied Microbiology. 2022;132(1):495–508. https://doi.org/10.1111/jam.15190
  172. Mackowiak CL, Amacher MC. Soil sulfur amendments suppress selenium uptake by alfalfa and western wheat-grass. Journal of Environmental Quality. 2008;37(3):772–779. https://doi.org/10.2134/jeq2007.0157
  173. Waters BM, Sankaran RP. Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective. Plant Science. 2011;180(4):562–574. https://doi.org/10.1016/j.plantsci.2010.12.003
  174. Sheoran S, Kumar S, Ramtekey V, Kar P, Meena RS, Jangir CK. Current status and potential of biofortification to enhance crop nutritional quality: An overview. Sustainability. 2022;14(6):3301. https://doi.org/10.3390/su14063301
How to quote?
About journal

Download
Contents
Abstract
Keywords
References