ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Antioxidant Activity of Plant Raw Materials as Natural Food Stabilizers

Abstract
Antioxidants protect living organisms from free radicals, as well as prevent the destruction of lipids and other nutrients. Natural alternatives to synthetic antioxidants can extend the shelf-life of food products and improve consumers’ health. Extracts of Rosaceae berries are known for their antioxidant properties and have a good potential as food stabilizers; however, their efficiency may depend on the region. The research featured ethyl acetate extracts from mountain ash berries (Sorbus aucuparia L.), blood-red hawthorn (Crataegus sanguinea Nutt.), and black hawthorn (Crataegus nigra Waldst. & Kit.), harvested ripe in the south of the Republic of Armenia. The kinetic modeling of cumene oxidation (348 K) made it possible to determine the antioxidant activity. The experiment involved a manometric installation with automatically regulated pressure that recorded oxygen absorption in the reaction mix. The blood-red hawthorn extract demonstrated the highest antioxidant activity (k7 ≈ 5.5×10⁻3 L/mol·s), exceeding the mountain ash indicators (k7 ≈ 2.3×10⁻³ L/mol·s) by 2.5 times. The effective concentration of antioxidants in the mountain ash extracts was slightly higher (3.8 mol/L) than in the blood-red hawthorn extract (3.5–3.8 mol/L). The black hawthorn extract showed much lower indicators in both antioxidant content (0.66 mol/L) and activity (2.4×10–4 L/mol·s). However, the oxidation products of black hawthorn antioxidants exhibited a strong antioxidant activity (k71 = 6.48×10² L/mol·s), almost three times higher than the corresponding indicator for the blood-red hawthorn sample. The ethyl acetate extracts of blood-red hawthorn (Crataegus sanguinea Nutt.) and mountain ash (Sorbus aucuparia L.) proved to be effective natural antioxidants that could replace synthetic food stabilizers and extend shelf-life. Despite its low initial antioxidant activity, the black hawthorn extract (Crataegus nigra Waldst. & Kit.) might be recommended for specific food systems with prolonged protective effects.
Keywords
Antioxidants, stabilizers, plant extracts, Sorbus aucuparia, Crataegus sanguinea, Crataegus nigra, cumene oxidation, quality, shelf life
REFERENCES
  1. Sharifi-Rad J, Kumar NVA, Zucca P, Varoni EM, Dini L, et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology. 2020;11:694. https://doi.org/10.3389/fphys.2020.00694
  2. Trineeva OV. Methods of determination of antioxidant activity of plant and synthetic origins in pharmacy (Review). Drug development & registration. 2017;(4):180-197. (In Russ.) https://elibrary.ru/ZTWVEX
  3. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry. 2015;97:55-74. https://doi.org/10.1016/j.ejmech.2015.04.040
  4. Taghvaei M, Jafari SM. Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. Journal of Food Science and Technology. 2015;52(3):1272-1282. https://doi.org/10.1007/s13197-013-1080-1
  5. Rahaman MM, Hossain R, Herrera-Bravo J, Islam MT, Atolani O, et al. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Science & Nutrition. 2023;11(4):1657-1670. https:// doi.org/10.1002/fsn3.3217
  6. Mititelu RR, Pădureanu R, Băcănoiu M, Pădureanu V, Docea AO, et al. Inflammatory and oxidative stress markers-mirror tools in rheumatoid arthritis. Biomedicines. 2020;8(5):125. https://doi.org/10.3390/biomedicines8050125
  7. Das N. A review on efficacy of spices and herbs as per Ayurveda and their role as a potent antioxidant and antimicrobial agents. Annals of Ayurvedic Medicine. 2022;11(4):349-363. https://doi.org/10.5455/AAM.18694
  8. Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of natural plant origins: From sources to food industry applications. Molecules. 2019;24(22):4132. https://doi.org/10.3390/molecules24224132
  9. Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods. 2015;18(Part B):820-897.
  10. Andreeva VYu, Isaykina NV, Tsybukova TN, Petrova EV. The study of the elemental composition of fruits of Viburnum opulus L. and Sorbus aucuparia L. various modern methods. Khimiya Rastitel’nogo Syr’ja. 2016;(1):177-180. (In Russ.) https://doi.org/10.14258/jcprm.201601893
  11. Isaykina NV, Kalinkina GI, Andreeva VYu, Sherstoboev EYu, Masnaya NV, et al. Rowan (Sorbus aucuparia L.): Determination of antocyans in the berries. Farmatsiya. 2015;(1):19-22. (In Russ.) https://elibrary.ru/TLUINN
  12. Rutkowska M, Kołodziejczyk-Czepas J, Olszewska MA. The effects of Sorbus aucuparia L. fruit extracts on oxidative/Nitrative modifications of human fibrinogen, impact on enzymatic properties of thrombin, and hyaluronidase activity in vitro. Antioxidants. 2021;10(12):2009. https://doi.org/10.3390/antiox10122009
  13. Aurori M, Niculae M, Hanganu D, Pall E, Cenariu M, et al. The Antioxidant, antibacterial and cell-protective properties of bioactive compounds extracted from rowanberry (Sorbus aucuparia L.) fruits in vitro. Plants. 2024;13(4):538. https://doi.org/10.3390/plants13040538
  14. Platonova EYu, Golubev DA, Zemskaya NV, Shevchenko OG, Patov SA, et al. The antioxidant and geroprotective properties of an extract of mountain ash (Sorbus aucuparia L.) fruits. Molecular Biology. 2023;57(6):979-994.
  15. State Pharmacopoeia of the Russian Federation edition XV. Institute of Pharmacopoeia and Medicinal Product Standardisation. [cited 2025 Mar 16] (In Russ.) Available from: https://pharmacopoeia.regmed.ru/ pharmacopoeia/izdanie-15/
  16. Özderin S. Chemical properties, antioxidant, and antimicrobial activities of fruit extracts of Crataegus monogyna var. odemisii. BioResources. 2024;19(1):1542-1557.
  17. Ülger TT, Oçkun MA, Guzelmeric E, Sen NB, Sipahi H, et al. Comprehensive analysis of the chemical and bioactivity profiles of endemic Crataegus turcicus donmez in comparison with other Crataegus species. Molecules. 2023;28(18):6520. https://doi.org/10.3390/molecules28186520
  18. Deyneka VI, Makarevich SL, Deyneka LA, Firsov GA, Sorokopudov VN, et al. Anthocyanins of some hawthorn species (Crataegus L., Rosaceae) fruits. Khimiya Rastitel’nogo Syr’ja. 2014;(4):123-128. (In Russ.) https://doi.org/10.14258/jcprm.1401119
  19. Budantsev AL, Belenovskaya LM, Bityukova NV. Component composition and biological activity of Crataegus pinnatifida (Rosaceae) (review). Khimiya Rastitel’nogo Syr’ja. 2020;(4):31-58. (In Russ.) https://journal.asu.ru/cw/article/view/6612
  20. Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, et al. The pharmacological activities of Crocus sativus L.: A review based on the mechanisms and therapeutic opportunities of its phytoconstituents. Oxidative Medicine and Cellular Longevity. 2022;8214821. https://doi.org/10.1155/2022/8214821
  21. Stabnikova O, Stabnikov V, Parades-LópezO. Fruit of wild-crown shrubs for health nutrition. Plant Foods for Human Nutrition. 2024;79(1):20-37. https://doi.org/10.1007/s11130-024-01144-3
  22. Akhtar A. The Flaws and human harms of animal experimentation. Cambridge Quarterly of Healthcare Ethics. 2015; 24(4):407-419. https://doi.org/10.1017/S0963180115000079
  23. Akimoto H. Homogeneous elementary reactions in the atmosphere and rate constants. Atmospheric Reaction Chemistry. Tokyo: Springer; 2016. pp. 165-238. https://doi.org/10.1007/978-4-431-55870-5_5
  24. Atkins P, de Paula J. Atkins’ physical chemistry. NY: Oxford University Press, 2018. 507 p.
How to quote?
About journal

Download
Contents
Abstract
Keywords
References