ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Production of Galacto-Oligosaccharides Using Kluyveromyces Yeast

Abstract
Galacto-oligosaccharides are known for their prebiotic activity. They are obtained from lactose using bacterial or fungal betagalactosidases. This article describes the factors that affect the biosynthesis and purification of galacto-oligosaccharides using Kluyveromyces yeasts, as well as summarizes some prospective research areas in this sphere. The research covered ten years of scientific publications on the production of galacto-oligosaccharides with yeast beta-galactosidases. The review pool included 87 articles published in peer-reviewed journals and registered in Scopus, Web of Science, PubMed, and eLIBRARY.RU. The yield, composition, and properties of galacto-oligosaccharides depend on the enzyme, its application, biosynthesis optimization, and purification conditions. Beta-galactosidases from Kluyveromyces can simultaneously catalyze hydrolysis and transgalactosylation reactions. The biosynthesis conditions vary a lot across the review pool, as does the yield of galacto-oligosaccharides, which usually remains below 30–40% while the total lactose conversion reaches 80–90%. Kluyveromyces beta-galactosidases can be used as whole-cell enzymes in immobilized form or together with other enzymes. They improve the economic indicators of biosynthesis, and / or the yield and / or the structure of galacto-oligosaccharides. If synthesized directly in milk or whey, galacto-oligosaccharides may yield new functional dairy products and additives. The method of selective bioconversion with Kluyveromyces yeast brings the purity of galacto-oligosaccharides up to 90% in an economical and sustainable way. Eventually, galacto-oligosaccharides can be obtained from dairy by-products. Other promising areas include the enzymic mixes of different producers, as well as a comprehensive use of Kluyveromyces beta-galactosidases for galacto-oligosaccharide biosynthesis and purification.
Keywords
Lactose, beta-galactosidases, Kluyveromyces, transgalactosylation, hydrolysis, whey, purification
REFERENCES
  1. Souza AFC, Gabardo S, de Jesus Silva Coelho R. Galactooligosaccharides: Physiological benefits, production strategies, and industrial application. Journal of Biotechnology. 2022;359:116-129. https://doi.org/10.1016/j.jbiotec.2022.09.020
  2. Ambrogi V, Bottacini F, Cao L, Kuipers B, Schoterman M, et al. Galacto-oligosaccharides as infant prebiotics: Production, application, bioactive activities and future perspectives. Critical Reviews in Food Science and Nutrition. 2023;63(6):753-766. https://doi.org/10.1080/10408398.2021.1953437
  3. Global galactooligosaccharides market overview. Market Research Future. [cited 2025 Mar 27]. Available from: https://www.marketresearchfuture.com/reports/galactooligosaccharides-market-22433
  4. Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Frontiers in Nutrition. 2019;6:78. https://doi.org/10.3389/fnut.2019.00078
  5. Guerrero C, Vera C, Illanes A. Optimisation of synthesis of oligosaccharides derived from lactulose (fructosyl-galacto- oligosaccharides) with β-galactosidases of different origin. Food Chemistry. 2013;138(4):2225-2232. https://doi.org/10.1016/ j.foodchem.2012.10.128
  6. Arnold JW, Whittington HD, Dagher SF, Roach J, Azcarate-Peril MA, et al. Safety and modulatory effects of humanized galacto-oligosaccharides on the gut microbiome. Frontiers in Nutrition. 2021;8:640100. https://doi.org/10.3389/fnut.2021.640100
  7. Ignatova I, Arsov A, Petrova P, Petrov K. Prebiotic effects of α- and β-galactooligosaccharides: The structure-function relation. Molecules. 2025;30(4):803. https://doi.org/10.3390/molecules30040803
  8. Deshmukh N, Rao PS, Sharma H, Sathish Kumar MH, Naik NL, et al. Waste to nutrition: The evolution of whey, a byproduct to galactooligosaccharides production. Food Chemistry Advances. 2024;4:100642. https://doi.org/10.1016/j.focha.2024.100642
  9. Maraz A, Kovacs Z, Benjamins E, Pazmandi M. Recent developments in microbial production of high-purity galacto-oligosaccharides. World Journal of Microbiology and Biotechnology. 2022;38(6):95. https://doi.org/10.1007/s11274-022-03279-4
  10. Zolnere K, Ciprovica I. The comparison of commercially available β-galactosidases for dairy industry: Review. Food Science. Research for Rural Development. 2017;1:215-222. https://doi.org/10.22616/rrd.23.2017.032
  11. Chen X, de Vos P. Structure-function relationship and impact on the gut-immune barrier function of non-digestible carbohydrates and human milk oligosaccharides applicable for infant formula. Critical Reviews in Food Science and Nutrition. 2024;64(23):8325-8345. https://doi.org/10.1080/10408398.2023.2199072
  12. Vera C, Guerrero C, Illanes A. Trends in lactose-derived bioactives: Synthesis and purification. Systems Microbiology and Biomanufacturing. 2022;2:393-412. https://doi.org/10.1007/s43393-021-00068-2
  13. Torres DPM, Goncalves M do PF, Teixeira JA, Rodrigues LR. Galacto-oligosaccharides: Production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety. 2010;9(5):438-454. https://doi.org/10.1111/j.1541-4337.2010.00119.x
  14. de Albuquerque TL, de Sousa M, Gomes E, Silva NC, Girao Neto CAC, et al. β-galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. International Journal of Biological Macromolecules. 2021;191:881-898. https://doi.org/10.1016/j.ijbiomac.2021.09.133
  15. Lyutova LV, Naumov GI, Naumova ES, Shnyreva AV. Molecular polymorphism of β-galactosidase LAC4 genes in dairy and natural strains of Kluyveromyces yeasts. Molecular Biology. 2021;55(1):66-74. (In Russ.) https://doi.org/10.31857/ S0026898421010109
  16. Lyutova LV, Naumova ES. Inter-strain hybridization of Kluyveromyces lactis for creating efficient lactose-fermenting yeast. Biotekhnologiya. 2021;37(4):43-50. (In Russ.) https://elibrary.ru/XZBKCB
  17. Lyutova LV, Naumova ES. Comparative analysis of fermentation of lactose and its components, glucose and galactose, by interstrain hybrids of dairy yeast Kluyveromyces lactis. Biotekhnologiya. 2023;39(1):3-11. (In Russ.) https://doi.org/ 10.56304/s0234275823010064
  18. Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Plou FJ. Galactooligosaccharides formation during enzymatic hydrolysis of lactose: Towards a prebiotic-enriched milk. Food Chemistry. 2014;145:388-394. https://doi.org/10.1016/j.foodchem.2013.08.060
  19. Liburdi K, Esti M. Galacto-oligosaccharide (GOS) synthesis during enzymatic lactose-free milk production: State of the art and emerging opportunities. Beverages. 2022;8(2):21. https://doi.org/10.3390/beverages8020021
  20. Fischer C, Kleinschmidt T. Synthesis of galactooligosaccharides in milk and whey: A review. Comprehensive Reviews in Food Science and Food Safety. 2018;17(3):678-697. https://doi.org/10.1111/1541-4337.12344
  21. Ganzle MG, Haase G, Jelen P. Lactose: Crystallization, hydrolysis and value-added derivatives. International Dairy Journal. 2008;18(7):685-694. https://doi.org/10.1016/j.idairyj.2008.03.003
  22. Guerrero C, Vera C, Conejeros R, Illanes A. Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme and Microbial Technology. 2015;70:9-17. https://doi.org/10.1016/j.enzmictec.2014.12.006
  23. Boger M, van Leeuwen SS, van Bueren AL, Dijkhuizen L. Structural identity of galactooligosaccharide molecules selectively utilized by single cultures of probiotic bacterial strains. Journal of Agricultural and Food Chemistry. 2019;67(50):13969- 13977. https://doi.org/10.1021/acs.jafc.9b05968
  24. van Leeuwen SS, Kuipers BJH, Dijkhuizen L, Kamerling JP. Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products. Carbohydrate Research. 2016;425:48-58. https://doi.org/10.1016/j.carres.2016.03.006
  25. Logtenberg MJ, Donners KMH, Vink JCM, van Leeuwen SS, de Waard P, et al. Touching the high complexity of prebiotic vivinal galacto-oligosaccharides using porous graphitic carbon ultra-high-performance liquid chromatography coupled to mass spectrometry. Journal of Agricultural and Food Chemistry. 2020;68(29):7800-7808. https://doi.org/10.1021/acs.jafc.0c02684
  26. Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnology Advances. 2020;43:107568. https://doi.org/10.1016/j.biotechadv.2020.107568
  27. Cao T, Pazmandi M, Galambos I, Kovacs Z. Continuous production of galacto-oligosaccharides by an enzyme membrane reactor utilizing free enzymes. Membranes. 2020;10(9):203. https://doi.org/10.3390/membranes10090203
  28. Botelho VA, Mateus M, Petrus JCC, de Pinho MN. Membrane bioreactor for simultaneous synthesis and fractionation of oligosaccharides. Membranes. 2022;12(2):171. https://doi.org/10.3390/membranes12020171
  29. Cordova A, Astudillo C, Giorno L, Guerrero C, Conidi C, et al. Nanofltration potential for the purifcation of highly concentrated enzymatically produced oligosaccharides. Food and Bioproducts Processing 2016;98:50-61. https://doi.org/10.1016/j.fbp.2015.11.005
  30. Information on EC 3.2.1.23 - beta-galactosidase. BRENDA. [cited 2025 Apr 21]. (In Russ.) Available from: https://www.brenda-enzymes.org/enzyme.php?ecno=3.2.1.23
  31. Khramtsov AG, Ryabtseva SA, Panfilova AA, Rodnaya AB, Lodygin AD. Yeast-producers of beta-galactosidases application for galactooligosaccharides production from lactose containing raw material. Storage and Processing of Farm Products. 2012;(8):36-39. (In Russ.) https://elibrary.ru/PDHUFT
  32. Qiu Y, Lei P, Wang R, Sun L, Luo Z, et al. Kluyveromyces as promising yeast cell factories for industrial bio¬production: From bio-functional design to applications. Biotechnology Advances. 2023;64:108125. https://doi.org/10.1016/ j.biotechadv.2023.108125
  33. Allende A, Alvarez-Ordonez A, Bolton D, Bover-Cid S, Chemaly M, et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 15: Suitability of taxonomic units notified to EFSA until September 2021. EFSA Journal. 2022;20(1):e07045.
  34. Spohner SC, Schaum V, Quitmann H, Czermak P. Kluyveromyces lactis: An emerging tool in biotechnology. Journal of Biotechnology. 2016;222:104-116. https://doi.org/10.1016/j.jbiotec.2016.02.023
  35. Reina-Posso D, Gonzales-Zubiate FA. Expanding horizons: The untapped potential of Kluyveromyces marxianus in biotechnological applications. Fermentation. 2025;11(2):98. https://doi.org/10.3390/fermentation11020098
  36. Pereira-Rodriguez A, Fernandez-Leiro R, Gonzalez-Siso MI, Cerdan ME, Becerra M, et al. Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. Journal of Structural Biology. 2012;177(2):392-401. https:// doi.org/10.1016/j.jsb.2011.11.031
  37. P00723 (BGAL_KLULA). SWISS-MODEL. [cited 2025 Apr 21]. (In Russ.) Available from: https://swissmodel. expasy.org/repository/uniprot/P00723?template=3ob8
  38. O’Connell S, Walsh G. Purification and properties of a β-galactosidase with potential application as a digestive supplement. Applied Biochemistry and Biotechnology. 2007;141:1-14. https://doi.org/10.1007/s12010-007-9206-4
  39. Yin H, Bultema JB, Dijkhuizen L, van Leeuwen SS. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chemistry. 2017;225:230-238. https://doi.org/10.1016/j.foodchem.2017.01.030
  40. Gonzalez-Delgado I, Lopez-Munoz M-J, Morales G, Segura Y. Optimisation of the synthesis of high galacto-oligo-saccharides (GOS) from lactose with β-galactosidase from Kluyveromyces lactis. International Dairy Journal. 2016;61:211-219. https://doi.org/10.1016/j.idairyj.2016.06.007
  41. Rico-Rodriguez F, Noriega MA, Lancheros R, Serrato-Bermudez JC. Kinetics of galactooligosaccharide (GOS) production with two β-galactosidases combined: Mathematical model and raw material effects. International Dairy Journal. 2021;118:105015. https://doi.org/10.1016/j.idairyj.2021.105015
  42. Fischer C, Kleinschmidt T. Synthesis of galactooligosaccharides using sweet and acid whey as a substrate. International Dairy Journal. 2015;48:15-22. https://doi.org/10.1016/j.idairyj.2015.01.003
  43. Frenzel M, Zerge K, Clawin-Radecker I, Lorenzen PC. Comparison of the galacto-oligosaccharide forming activity of different β-galactosidases. LWT - Food Science and Technology. 2015;60(2, Part 1):1068-1071. https://doi.org/10.1016/ j.lwt.2014.10.064
  44. Botvynko A, Bednarova A, Henke S, Shakhno N, Curda L. Production of galactooligosaccharides using various combinations of the commercial β-galactosidases. Biochemical and Biophysical Research Communications. 2019;517(4):762-766. https://doi.org/10.1016/j.bbrc.2019.08.001
  45. Singh P, Arora S, Rao PS, Kathuria D, Sharma V, et al. Effect of process parameters on the β-galactosidase hydrolysis of lactose and galactooligosaccharide formation in concentrated skim milk. Food Chemistry. 2022;393:133355. https://doi.org/10.1016/j.foodchem.2022.133355
  46. Mano MCR, Paulino BN, Pastore GM. Whey permeate as the raw material in galacto-oligosaccharide synthesis using commercial enzymes. Food Research International. 2019;124:78-85. https://doi.org/10.1016/j.foodres.2018.09.019
  47. Padilla B, Ruiz-Matute AI, Belloch C, Cardelle-Cobas A, Corzo N, et al. Evaluation of oligosaccharide synthesis from lactose and lactulose using β-galactosidases from Kluyveromyces isolated from artisanal cheeses. Journal of Agricultural and Food Chemistry. 2012;60(20):5134-5141. https://doi.org/10.1021/jf300852s
  48. Petrova VY, Kujumdzieva AV. Thermotolerant yeast strains producers of galacto-oligosaccharides. Biotechnology & Biotechnological Equipment. 2010;24(1):1612-1619. https://doi.org/10.2478/V10133-010-0014-6
  49. Srivastava A, Mishra S, Chand S. Synthesis of galacto-oligosaccharides from lactose using immobilized cells of Kluyveromyces marxianus NCIM 3551. Journal of Molecular Catalysis B: Enzymatic. 2016;123:147-153. https://doi.org/10.1016/j.molcatb.2015.11.017
  50. Srivastava A, Rastogi A, Jaswal AS, Sahu JK, Agarwal GP, et al. Nanofiltration-based purification process for whole-cell transformed prebiotic galactooligosaccharides. Bioprocess and Biosystems Engineering. 2025;48:621-631. https://doi.org/10.1007/s00449-025-03132-6
  51. Srivastava A, Mishra S, Chand S. Transgalactosylation of lactose for synthesis of galacto-oligosaccharides using Kluyveromyces marxianus NCIM 3551. New Biotechnology. 2015;32(4):412-418. https://doi.org/10.1016/j.nbt.2015.04.004
  52. Botvynko A, Synytsya A, Curda L. Synthesis of galactooligosaccharides with four β-galactosidases: Structural comparison of the products by HPLC, ESI-MS and NMR. Biochemical and Biophysical Research Communications. 2025;744:151204. https://doi.org/10.1016/j.bbrc.2024.151204
  53. Rodriguez-Colinas B, de Abreu MA, Fernandez-Arrojo L, de Beer R, Poveda A, et al. Production of galacto-oligosaccharides by the β-galactosidase from Kluyveromyces lactis: Comparative analysis of permeabilized cells versus soluble enzyme. Journal of Agricultural and Food Chemistry. 2011;59(19):10477-10484. https://doi.org/10.1021/jf2022012
  54. van Trijp MPH, Rios-Morales M, Logtenberg MJ, Keshtkar S, Afman LA, et al. Detailed analysis of prebiotic fructo- and galacto-oligosaccharides in the human small intestine. Journal of Agricultural and Food Chemistry. 2024;72(38):21152-21165. https://doi.org/10.1021/acs.jafc.4c03881
  55. Ferreira-Lazarte A, Gallego-Lobillo P, Moreno FJ, Villamiel M, Hernandez-Hernandez O. In vitro digestibility of galactooligosaccharides: Effect of the structural features on their intestinal degradation. Journal of Agricultural and Food Chemistry. 2019;67(16):4662-4670. https://doi.org/10.1021/acs.jafc.9b00417
  56. Akbari P, Fink-Gremmels J, Willems RHAM, Difilippo E, Schols HA, et al. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells: Insight into the role of structure and size. European Journal of Nutrition. 2017;56(5):1919-1930. https://doi.org/10.1007/s00394-016-1234-9
  57. Figueroa-Lozano S, Ren C, Yin H, Pham H, van Leeuwen S, et al. The impact of oligosaccharide content, glycosidic linkages and lactose content of galacto-oligosaccharides (GOS) on the expression of mucus-related genes in goblet cells. Food & Function. 2020;11(4):3506-3515. https://doi.org/10.1039/d0fo00064g
  58. Teymennet-Ramnez KV, Martinez-Morales F, Trejo-Hernandez MR. Yeast surface display system: Strategies for improvement and biotechnological applications. Frontiers in Bioengineering and Biotechnology. 2022;9:794742. https://doi.org/10.3389/fbioe.2021.794742
  59. Sun H, You S, Wang M, Qi W, Su R, et al. Recyclable strategy for the production of high-purity galacto-oligosaccharides by Kluyveromyces lactis. Journal of Agricultural and Food Chemistry. 2016;64(28):5679-5685. https://doi.org/10.1021/acs.jafc.6b01531
  60. Gonzalez-Catano F, Tovar-Castro L, Castano-Tostado E, Regalado-Gonzalez C, Garcia-Almendarez B, et al. Im¬provement of covalent immobilization procedure of β-galactosidase from Kluyveromyces lactis for galactooligosaccharides production: Modeling and kinetic study. Biotechnology Progress. 2017;33(6):1568-1578. https://doi.org/10.1002/btpr.2509
  61. Misson M, Dai S, Jin B, Chen BH, Zhang H. Manipulation of nanofiber-based β-galactosidase nanoenvironment for enhancement of galacto-oligosaccharide production. Journal of Biotechnology. 2016;222:56-64. https://doi.org/10.1016/j.jbiotec.2016.02.014
  62. Misson M, Jin B, Dai S, Zhang H. Interfacial biocatalytic performance of nanofiber-supported β-galactosidase for production of galacto-oligosaccharides. Catalysts. 2020;10(1):81. https://doi.org/10.3390/catal10010081
  63. Majore K, Ciprovica I. Bioconversion of lactose into glucose-galactose syrup by two-stage enzymatic hydrolysis. Foods. 2022;11(3):400. https://doi.org/10.3390/foods11030400
  64. Bolognesi LS, Gabardo S, Dall Cortivo PR, Ayub MAZ. Biotechnological production of galactooligosaccharides (GOS) using porungo cheese whey. Food Science and Technology. 2022;42:e64520. https://doi.org/10.1590/fst.64520
  65. Chenafa A, Abdo AAA, Mahdi AA, Zhang Q, Chen C, et al. Functionalized electrospun nanofibers to enhance β-Galactosidase immobilization and catalytic activity for efficient galactooligosaccharide synthesis. International Journal of Biological Macromolecules. 2024;270:132312. https://doi.org/10.1016/j.ijbiomac.2024.132312
  66. Xuan Z, Wang K, Duan F, Lu L. Non-carrier immobilization of yeast cells by genipin crosslinking for the synthesis of prebiotic galactooligosaccharides from plant-derived galactose. International Journal of Biological Macromolecules. 2024; 277(Part 1):133991. https://doi.org/10.1016/j.ijbiomac.2024.133991
  67. Ren H, Fei J, Shi X, Zhao T, Cheng H, et al. Continuous ultrafiltration membrane reactor coupled with nanofiltration for the enzymatic synthesis and purification of galactosyl-oligosaccharides. Separation and Purification Technology. 2015;144: 70-79. https://doi.org/10.1016/j.seppur.2015.02.020
  68. Ryabtseva SA, Kotova AA, Skripnyuk AA. Synthesis of galactooligosaccharides using Kl. marxianus and streptococcus thermophilus. Dairy industry. 2017; (6):62-64. (In Russ.] https://elibrary.ru/YULXGF
  69. Fischer C, Kleinschmidt T. Combination of two β-galactosidases during the synthesis of galactooligosaccharides may enhance yield and structural diversity. Biochemical and Biophysical Research Communications. 2018;506(1):211-215. https://doi.org/10.1016/j.bbrc.2018.10.091
  70. Fischer C, Kleinschmidt T. Effect of glucose depletion during the synthesis of galactooligosaccharides using a trienzymatic system. Enzyme and Microbial Technology. 2019;121:45-50. https://doi.org/10.1016/j.enzmictec.2018.10.009
  71. Rico-Rodriguez F, Serrato JC, Montilla A, Villamiel M. Impact of ultrasound on galactooligosaccharides and gluconic acid production throughout a multienzymatic system. Ultrasonics Sonochemistry. 2018;44:177-183. https://doi.org/10.1016/ j.ultsonch.2018.02.022
  72. Ponnusamy V, Sankaranarayanan M. Targeted gene manipulation of Leloir pathway genes for the constitutive expression of β-galactosidase and its transgalactosylation product galacto-oligosaccharides from Kluyveromyces lactis GG799 and knockout strains. Enzyme and Microbial Technology. 2023;169:110263. https://doi.org/10.1016/j.enzmictec.2023.110263
  73. Kaczynski LK, Cais-Sokolinska D, Szwengiel A. Kinetics of lactose hydrolysis and galactooligosaccharides formation in beverages based on goat’s milk and its permeate. Food Science and Biotechnology. 2019;28(5):1529-1534. https://doi.org/10.1007/s10068-019-00600-0
  74. Limnaios A, Tsevdou M, Tsika E, Korialou N, Zerva A, et al. Production of prebiotic galacto-oligosaccharides from acid whey catalyzed by a novel β-galactosidase from Thermothielavioides terrestris and commercial lactases: A comparative study. Catalysts. 2023;13(10):1360. https://doi.org/10.3390/catal13101360
  75. Limnaios A, Tsevdou M, Zafeiri E, Topakas E, Taoukis P. Cheese and yogurt by-products as valuable ingredients for the production of prebiotic oligosaccharides. Dairy. 2024;5(1):78-92. https://doi.org/10.3390/dairy5010007
  76. Guron GKP, Hotchkiss ATJr, Bodnar BH, Harron A, Renye JAJr, et al. Oligosaccharide production using β-galactosidase from Lactobacillus bulgaricus and Kluyveromyces lactis in sweetened reconstituted nonfat dry milk. Journal of Dairy Science. 2025;108(6):5696-5704. https://doi.org/10.3168/jds.2025-26396
  77. Hoyos JD, Noriega MA, Riascos CAM. Modeling and simulation of the enzymatic kinetics for the production of Galactooligosaccharides (GOS) using an Artificial Neural Network hybrid model. Digital Chemical Engineering. 2023;9:100132. https://doi.org/10.1016/j.dche.2023.100132
  78. Rico-Rodriguez F, Villamiel M, Ruiz-Aceituno L, Serrato JC, Montilla A. Effect of the lactose source on the ultrasound-assisted enzymatic production of galactooligosaccharides and gluconic acid. Ultrasonics Sonochemistry. 2020;67:104945. https://doi.org/10.1016/j.ultsonch.2019.104945
  79. Cordova A, Astudillo-Castro C, Henriquez P, Manriquez N, Nunez H, et al. Ultrasound-assisted enzymatic synthesis of galacto-oligosaccharides using native whey with two commercial β-galactosidases: Aspergillus oryzae and Kluyveromyces var lactis. Food Chemistry. 2023;426:136526. https://doi.org/10.1016/j.foodchem.2023.136526
  80. Jarrard TR, Brock E, Hansen LD, Kenealey JD. Measuring β-galactosidase activity in opaque dairy solutions under optimum conditions for galactooligosaccharide synthesis by isothermal titration calorimetry. Journal of Dairy Science. 2023; 106(12):8312-8320. https://doi.org/10.3168/jds.2023-23400
  81. Yeo I-S, Yoon Y-J, Seo N, An HJ, Kim J-H. Biopurification of oligosaccharides by immobilized Kluyveromyces lactis. Applied Sciences. 2019;9(14):2845. https://doi.org/10.3390/app9142845
  82. Tokosova S, Hronska H, Rosenberg M. Production of high-content galacto-oligosaccharides mixture using β-galactosidase and Kluyveromyces marxianus entrapped in polyvinylalcohol gel. Chemical Papers. 2016;70:1445-1451. https://doi.org/ 10.1515/chempap-2016-0081
  83. Santibanez L, Guerrero C, Illanes A. Raw galacto-oligosaccharide purification by consecutive lactose hydrolysis and selective bioconversion. International Dairy Journal. 2017;75:91-100. https://doi.org/10.1016/j.idairyj.2017.07.008
  84. Guerrero C, Vera C, Illanes A. Selective bioconversion with yeast for the purifcation of raw lactulose and trans-galactosylated oligosaccharides. International Dairy Journal. 2018;81:131-137. https://doi.org/10.1016/j.idairyj.2018.02.003
  85. Srivastava A, Mishra S. Enrichment and evaluation of galactooligosaccharides produced by whole cell treatment of sugar reaction mixture. Molecular Biology Reports. 2019;46:1181-1188. https://doi.org/10.1007/s11033-019-04585-1
  86. Pazmandi M, Kovacs Z, Balga E, Kovacs M, Maraz A. Production of high-purity galacto-oligosaccharides by depleting glucose and lactose from galacto-oligosaccharide syrup with yeasts. Yeast. 2020;37(9-10):515-530. https://doi.org/10.1002/yea.3507
  87. Zhang X, Yao C, Wang T, Zhao H, Zhang B. Production of high-purity galacto-oligosaccharides (GOS) by Lacto-bacillus-derived β-galactosidase. European Food Research and Technology. 2021;247:1501-1510. https://doi.org/10.1007/s00217-021-03727-9
  88. Li Z, Tian-Tian L, Aziz T, Min Z, Sarwar A, et al. Purification of galacto-oligosaccharide (GOS) by fermentation with Kluyveromyces lactis and interaction between GOS and casein under simulated acidic fermentation conditions. World Journal of Microbiology and Biotechnology. 2023;39(12):342. https://doi.org/10.1007/s11274-023-03791-1
  89. Cao L, Bultsma M, Wissing J, Gerhard BE, Ziegler M, et al. High purity galacto-oligosaccharides: Optimal process design and prebiotic effect. Bioactive Carbohydrates and Dietary Fibre. 2023;30:100387. https://doi.org/10.1016/j.bcdf.2023.100387
How to quote?
About journal

Download
Contents
Abstract
Keywords
References