ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Carbon Dioxide Extraction Products as Biostimulators for Yeast Saccharomyces cerevisiae

Abstract
Yeast cultures with advanced metabolic indicators improve various industrial biotechnological processes. New sources of biostimulators involve mainly natural resources, e.g., Taraxacum officinale Wigg. or Trifolium pratense L., as well as non-destructive extraction methods, e.g., supercritical fluid extraction (SCFE). This research featured the effect of CO2 extracts of T. officinale and T. pratense on the enzymatic and physiological profiles of yeast culture.
The experiment involved CO2 extracts of T. officinale and T. pratense obtained by SCFE at 8.0–20.0 MPa and 40°C, as well as industrial brewer’s yeast. The method of gas chromatography made it possible to reveal the chemical composition of the extracts while the Warburg method revealed the fermentation activity of the yeast.
The rational parameters of SCFE for T. officinale included a working pressure of 15.0 MPa while for T. pratense it was 8.0–15.0 MPa. The separate fractions of CO2 extracts obtained with SCFE differed in many aspects. The appearance varied from liquid to waxy. The refractive index correlated with the working pressure. The chemical composition was represented by different mixes of hydrocarbons, phenolic compounds, fatty acids, ketones, aldehydes, and alcohols. The bioactive potential demonstrated antibacterial, antioxidant, and other properties. The analysis involved the chemical composition of the CO2 extracts during longterm storage based on spectrograms and chemical composition. It showed a decrease in the concentration and transformation of polyphenols, flavonoids, and other essential oil components. The microbiological profile of the CO2 extracts was as follows: on storage day 30 at 20–24°C, they contained gram-negative bacteria. However, no microflora was detected when the storage conditions were 2–4°C in the dark. The initial extracts were also microflora-free. When treated with aqueous solutions of CO2 extracts of T. officinale and T. pratense for 20–30 min in an amount of 0.2–2.0% biomass volume, the yeast increased their fermentation activity by an average of 220% while the dead cell count went d own.
In this research, the CO2 extracts of T. officinale and T. pratense demonstrated good prospects as industrial yeast biostimulators.
Keywords
Supercritical CO2 extraction, chemical composition, biostimulators, Taraxacum officinale, Trifolium pratense, Saccharomyces cerevisiae, fermentation activity, physiological parameters
FUNDING
The research was supported by the Russian Science Foundation, Grant No. 24-26-00134, https://rscf.ru/project/24-26-00134/ 
REFERENCES
  1. 1. Permyakova LV. Classification of preparatiopns to promote yeast vital activity. Food Processing: Techniques and Technology. 2016;42(3):46-55. (In Russ.)
    2. Klindukhova YuO. Improving the technology of bakery products using hop processing products. Izvestiya vuzov. Food technology. 2012;(2-3):33. (In Russ.) https://elibrary.ru/PAMCJB
    3. Palagina MV, Plekhova NG, Cherevach EI. The influence of plant extracts on the functional activity and intracellular metabolite of brewer’s yeast. International Journal of Applied and Fundamental Research. 2012;(2).
    4. Sergeeva I, Permyakova L, Markov A, Ryabokoneva L, Atuchin V, et al. Peptides of yeast Saccharomyces cerevisiae activated by the aquatic extract of Atriplex sibirica L. ACS Food Science & Technology. 2024;4(1):173-189. https://doi.org/10.1021/acsfoodscitech.3c00455
    5. Kuzmina SS, Kozubaeva LA, Egorova EYu, Kulushtayeva BM, Smolnikova FKh. Effect of berry extracts on Saccharomyces cerevisiae yeast. Food Processing: Techniques and Technology. 2021;51(4):819-831. (In Russ.) https://doi.org/10.21603/2074-9414-2021-4-819-831
    6. Sadikova MI, Muhammadiyev BT. Use of fruit vegetable cryopowders in food technology. Universum: Chemistry and Biology. 2021;(4):46-49. (In Russ.) https://elibrary.ru/LMMQIQ
    7. Krikunova LN, Meleshkina EP, Vitol IS, Dubinina EV, Obodeeva ON. Grain bran hydrolysates in the production of fruit distillates. Foods and Raw Materials. 2023;11(1):35-42. https://doi.org/10.21603/2308-4057-2023-1-550
    8. Laila U, Kaur J, Sharma K, Singh J, Rasane P, et al. Dandelion (Taraxacum officinale): A promising source of nutritional and therapeutic compounds. Recent Advances in Food, Nutrition & Agriculture. 2025;16(1):41-56. https://doi.org/10.2174/012772574X293072240217185616
    9. Evstafev SN, Tiguntseva NP. Biologically active substances of dandelion Taraxacum officinale Wigg. (Review). Proceedings of Universities. Applied Che¬mistry and Biotechnology. 2014;(1):18-29. (In Russ.) https://elibrary.ru/SADNOV
    10. Platonov VV, Khadartsev AA, Valentinov BG, Sukhikh GT, Dunaev VA, et al. Chemical composition of hexane extract of wild dandelion root (Taraxacum officinalic Wigg., Asteraceae family). Journal of new medical technologies, eEdition. 2022;16(2):106-126. (In Russ.) https://doi.org/10.24412/2075-4094-2022-2-3-3
    11. Milovanovic S, Grzegorczyk A, Swiqtek L, Boguszewska A, Kowalski R, et al. Phenolic, tocopherol, and essential fatty acid-rich extracts from dandelion seeds: Chemical composition and biological activity. Food and Bioproducts Processing. 2023;142:70-81. https://doi.org/10.1016/j.fbp.2023.09.005
    12. Shevtsov AA, Drannikov AV, Derkanosova AA, Torshina AA, Orinicheva AA, et al. Study of a fodder protein supplement from plant raw materials with phytobiotic properties. Proceedings of the Voronezh State University of Engineering Technologies. 2020;82(3):65-70. (In Russ.) https://doi.org/10.20914/2310- 1202-2020-3-65-70
    13. Jalolov I, Abdurahmonova S. Investigation of macro and micro elements of the plant Trifolium pratense by the ICP-MS method. Universum: Chemistry and Biology. 2023;2-1:35-38. (In Russ.) https://doi.org/10.32743/UniChem.2023.104.2.14909
    14. Belashova OV, Kozlova OV, Velichkovich NS, Fokina AD, Yustratov VP, et al. A phytochemical study of the clover growing in Kuzbass. Foods and Raw Materials. 2024;12(1):194-206. (In Russ.). https://doi.org/10.21603/2308-4057-2024-1-599
    15. Bekuzarova SA, Shabanova IA. Seed production of red clover. Vladikavkaz: Izdatel’stvo FGBOU VO “Gorsk State Agrarian University”; 2020. 224 p. (In Russ.)
    16. Andreeva VIu, Kalinkina GI, Poluektova TV, Guliaeva VA. The comparative study of phenolic compounds in Trifolium L. species in Siberia. Chemistry of plant raw material. 2018;(1):97-104. (In Russ.) https://doi.org/10.14258/jcprm.2018011846
    17. Konichev A, Baurin P, Fedorovskiy N, Marakhova A, Yakubovich L, et al. Traditional and modern methods of exstraction of biology active substances from plant materials: Perspective, dignities, limitations. Bulletin of the MSRU. Series: Natural sciences. 2011;(3):49-54. (In Russ.) https://elibrary.ru/OFOKXD
    18. Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy and Bioallied Sciences. 2020;12(1):1-10. https://doi.org/10.4103/jpbs.JPBS_175_19
    19. Abashkin IA, Eleev YuA, Glukhan EN, Kuchinsky EV, Afanasyev VV. Extraction methods for biologically active substances from plant materials (Review). Chemistry and Technology of Organic Substances. 2021;(2):43-59. (In Russ.) https://doi.org/ 10.54468/25876724_2021_2_43
    20. Elapov AA, Kuznetsov NN, Marakhova AI. The use of ultrasound in the extraction of biologically active compounds from plant raw materials, used or promising for use in medicine (Review). Drug development & registration. 2021;10(4):96-116. (In Russ.) https://doi.org/10.33380/2305-2066-2021-10-4-96-116
    21. Starokadomsky D, Titenko A, Kamarali A, Kuts V, Maloshtan S, Barkholenko V. et al. Review of scientific works on technologies for extraction of biocomponents from vegetable raw materials. Supercritical CO2 extraction is an effective new method for solving the global problem of utilization and quality of plant and organic raw materials. Globus: Technical sciences. 2021;7(3):9-24. (In Russ.) https://doi.org/10.52013/2713-3079-39-3-2
    22. Tzima S, Georgiopoulou I, Louli V, Magoulas K. Recent advances in supercritical CO2 extraction of pigments, lipids and bioactive compounds from microalgae. Molecules. 2023;28(3):1410. https://doi.org/10.3390/molecules28031410
    23. Zoccali M, Donato P, Mondello L. Recent advances in the coupling of carbon dioxide-based extraction and separation techniques. TrAC Trends in Analytical Chemistry. 2019;116:158-165. https://doi.org/10.1016/j.trac.2019.04.028
    24. Kaluzhina OYu. The content of biologically active elements in the dandelion extract and its impact on the physiology of yeasts Saccaromyces cerevisiae. Izvestia Orenburg State Agrarian University. 2013;(5):197-199. (In Russ.) https://elibrary.ru/RHAAWN
    25. Permyakova LV, Sergeeva IY, Ryabokoneva LA, Lashitsky SS. Application of CO2-ferments as stimulators of vital activity of brewer’s yeast. Agro-industrial complex of Russia. 2025;32(1):113-120. (In Russ.) https://doi.org/10.55934/2587-8824-2025-32-1-113-120
    26. Kachmazov GS. Yeasts of fermentation industries. Practical guide: Study guide. St. Petersburg: Lan’; 2022. 224 p.
    27. Davydenko SG. The creation and application of a new rapid method of assessing the quality of the seed yeast. Beer and beverages. 2012;(5):20-23. (In Russ.) https://elibrary.ru/PDHVLR
    28. Sobol IV, Rodionova LYa, Barisheva IN. Exploring the possibility of obtaining pectin extracts of high purity. Polythematic online scientific journal of Kuban STATE agrarian University. 2016;(123):79-89. (In Russ.) https://doi.org/10.21515/1990-4665-123-004
    29. Strupan EA, Tipsina NN, Strupan OA. Chemical composition of wild medicinal raw materials growing in Krasnoyarsk Krai. Bulletin of KSAU. 2008;(1):124-126. (In Russ.) https://elibrary.ru/IIRHDB
    30. Daneshnia F, Amini A, Chaichi MR. Berseem clover quality and basil essential oil yield in intercropping system under limited irrigation treatments with surfactant. Agricultural Water Management. 2016;164(Part 2):331-339. https://doi.org/10.1016/j.agwat.2015.10.036
    31. Butkute B, Lemeziene N, Padarauskas A, Norkeviciene E, Taujenis L. Chemical composition of zigzag clover (Trifolium medium L.). Breeding Grasses and Protein Crops in the Era of Genomics. 2018. pp. 83-87. https://doi.org/10.1007/978- 3-319-89578-915
    32. Kolodziejczyk-Czepas J. Trifolium species - The latest findings on chemical profile, ethnomedicinal use and pharmacological properties. Journal of Pharmacy and Pharmacology. 2016;68(7):845-861. https://doi.org/10.1111/jphp.12568
    33. Sabudak T, Ozturk M, Goren AC, Kolak U, Topcu G. Fatty acids and other lipid composition of five Trifolium species with antioxidant activity. Pharmaceutical Biology. 2009;47(2):137-141. https://doi.org/10.1080/13880200802439343
    34. Uddin MR, Akhter F, Abedin J, Shaikh AA, Al Mansur MA, et al. Comprehensive analysis of phytochemical profiling, cytotoxic and antioxidant potentials, and identification of bioactive constituents in methanoic extracts of Sonneratia apetala fruit. Heliyon. 2024;10(13):e33507. https://doi.org/10.1016/j.heliyon.2024.e33507
    35. Suwito H, Heffen WL, Cahyana H, Suwarso WP. Isolation, transformation, anticancer, and apoptosis activity of lupeyl acetate from Artocarpus integra. AIP Conference Proceedings. 2016;1718:080004. https://doi.org/10.1063/1.4943339
    36. Scanu M, Toto F, Petito V, Masi L, Fidaleo M, et al. An integrative multi-omic analysis defines gut microbiota, mycobiota, and metabolic fingerprints in ulcerative colitis patients. Frontiers in Cellular and Infection Microbiology. 2024;14:1366192. https://doi.org/10.3389/fcimb.2024.1366192
    37. Avdeeva EYu, Krasnov EA, Shilova IV. Component composition of the fraction Filipendula ulmaria (L.) Maxim. with high antioxidant activity. Chemistry of plant raw materials. 2008;(3):115-118. (In Russ.) https://elibrary.ru/JUVDAB
    38. Katanic J, Boroja T, Stankovic N, Mihailovic VB, Mladenovic M, et al. Bioactivity, stability and phenolic characteriza¬tion of Filipendula ulmaria (L.) Maxim. Food & Function. 2015;6(4):1164-1175. https://doi.org/10.1039/c4fo01208a
    39. Skanda S, Vijayakumar BS. Antioxidant and antibacterial potential of crude extract of soil fungus Periconia sp. (SSS-8). Arabian Journal for Science and Engineering. 2022;47(6):6707-6714. https://doi.org/10.1007/s13369-021-06061-0
    40. Kruglyakova AA, Ramenskaya GV. Beta-sitosterin: Properties, approaches to quantitative analysis. Bulletin of Pirigov National Medical & Surgical Center. 2016;11(4):35-38. (In Russ.) https://elibrary.ru/XVRTLN
    41. Siyumbwa SN, Ekeuku SO, Amini F, Emerald NM, Sharma D, et al. Wound healing and antibacterial activities of 2-Pentadecanone in streptozotocin-induced Type 2 diabetic rats. Pharmacognosy Magazine. 2019;15(62):71-77. https://doi.org/10.4103/pm.pm_444_18
    42. Fujita K, Chavasiri W, Kubo I. Anti-Salmonella activity of volatile compounds of Vietnam coriander. Phytotherapy Research. 2015;29(7):1081-1087. https://doi.org/10.1002/ptr.5351
    43. Akomolafe SF. Chemical composition, cytotoxic and antimicrobial activity of essential oil from Tetracarpidium Conophorum leaves. Journal of Food Science & Nutrition. 2024;10:181. https://doi.org/10.24966/FSN-1076/100181
    44. Al-Rajhi AMH, Qanash H, Almuhayawi MS, Al Jaouni SK, Bakri MM, et al. Molecular interaction studies and phytochemical characterization of Mentha pulegium L. constituents with multiple biological utilities as antioxidant, antimicrobial, anticancer and anti-hemolytic agents. Molecules. 2022;27(15):4824. https://doi.org/10.3390/molecules27154824
    45. Belenovskaya LM, Bityukova NV, Bobyleva NS, Budancev AL, Danchul TYu, et al. Plant resources of Russia. Wild flowering plants, their component composition and biological activity. Supplements to Volume 1. St. Petersburg, Moscow: Tovarishchestvo nauchnykh izdaniy KMK; 2018. 409 p.
    46. Makeeva AS, Sidorin AV, Ishtuganova VV, Padkina MV, Rumyantsev AM. Effect of biotin starvation on gene expression in Komagataella phaffii cells. Biochemistry. 2023;88(9):1655-1666. (In Russ.) https://doi.org/10.31857/S0320972523090166
    47. Chen Y, Wang Y, He L, Wang L, Zhao J, et al. Zein/fucoidan-coated phytol nanoliposome: Preparation, characterization, physicochemical stability, in vitro release, and antioxidant activity. Journal of the Science of Food and Agriculture. 2024;104(12):7536-7549. https://doi.org/10.1002/jsfa.13575
    48. Stoyanova YaV, Strelyaeva AV, Kuznetsov RM, Strelyaev ND, Bobrova EI. Pharmacognostic study of herb of Tanacetum vulgare L. medicinal plant raw materials and unacceptable admixture of the genus ranunculus plants raw materials. Vestnik of the Smolensk State Medical Academy. 2023;22(2):215-222. (In Russ.) https://elibrary.ru/PWKQWQ
    49. Mikyska A, Krofta K. Assessment of changes in hop resins and polyphenols during long-term storage. Journal of The Institute of Brewing. 2012;118(3):269-279. https://doi.org/10.1002/jib.40
    50. Solovieva NL, Sokurenko MS. Technologies to improve the stability of polyphenolic compounds in drug discovery (Review). Drug development & registration. 2016;(4):82-91. (In Russ.) https://elibrary.ru/XCIYWU
    51. Kuregyan AG, Stepanova EF, Pechinsky SV, Oganesyan ET. Carotenoid substance stabilization model. Storage and Processing of Farm Products. 2020;(4):55-66. (In Russ.) https://doi.org/ 10.36107/spfp.2020.345
    52. Shi L, Zhao W, Yang Z, Subbiah V, Suleria HAR. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research. 2022;29(54):81112-81129. https://doi.org/ 10.1007/s11356-022-23337-6
    53. Kurkin VA, Tsibina AS. New approaches for the standardization of the Monarda fistulosa herb. Fine Chemical Technologies. 2020;15(4):30-38. (In Russ.) https://doi.org/10.32362/2410-6593-2020-15-4-30-38
    54. Trineeva OV, Slivkin AI, Safonova EF. Determination of hydroxycinnamic acids, carotenoids and chlorophyll in the leaves of Stinging nettle (Urtica dioica L.). Chemistry of plant raw materials. 2015;(3):105-110.] (In Russ.) https://doi.org/10.14258/jcprm.201503522
    55. Kurkin VA, Aznagulova AV. Phytochemical study of aerial parts of Taraxacum officinale Wigg. Chemistry of plant raw materials. 2017;(1):99-105. (In Russ.) https://doi.org/10.14258/jcprm. 2017011027
    56. Lukashou RI, Gurina NS. Factors increasing the hydroxycinnamic acids extraction from dandelion roots. Aspirantskiy vestnik Povolzhiya. 2024;24(2):86-92. (In Russ.) https://doi.org/10.35693/AVP636701
    57. Bleoanca I, Bahrim GE. Overview on brewing yeast stress factors. Romanian Biotechnological Letters. 2013; 18(5):8559-8572.
    58. Guan N, Li J, Shin H-D, Du G, Chen J, et al. Microbial response to environmental stresses: From fundamental mechanisms to practical applications. Applied Microbiology and Biotechnology. 2017;101(10):3991-4008. https://doi.org/ 10.1007/s00253-017-8264-y
How to quote?
Permyakova LV, Ryabokoneva LA, Sergeeva IYu, Lashitskiy SS, Li Y, et al. Carbon Dioxide Extraction Products as Biostimulators for Yeast Saccharomyces cerevisiae. Food Processing: Techniques and Technology. 2025;55(3):607–623. (In Russ.) https://doi.org/10.21603/2074-9414-2025-3-2592 
About journal

Download
Contents
Abstract
Keywords
Funding
References