ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Antimicrobial Properties of Siberian Wild Plant Extracts: Pulmonaria officinalis, Heracleum sibiricum, and Syringa vulgaris

Abstract
Pathogenic microorganisms cause food spoilage. Food science knows a number of methods to prevent it without compromising the original food quality. Plant extracts are effective and safe components that contain organic acids and polyphenols capable of inhibiting the growth of pathogenic microorganisms. This in-vitro research featured the antimicrobial and metabolomic profiles of plant extracts from the Kemerovo Region, Western Siberia, Russia, as well as their antiseptic and antimicrobial prospects. The aqueous-alcohol extracts of Heracleum sibiricum L., Pulmonaria officinalis L., and Syringa vulgaris L. in various concentrations (40, 55, 60, 70%) were tested for antimicrobial activity in vitro using the disc diffusion method. The method of high-performance liquid chromatography with a UV detector made it possible to identify the metabolomic composition. The concentration was calculated mathematically, by calibration equations (3–5% mean error). The extracts of H. sibiricum, P. officinalis, and S. vulgaris demonstrated different antimicrobial activities. The broadest range belonged to the 40 and 60% aqueous-alcoholic extracts of H. sibiricum, which were able to inhibit Escherichia coli, Enterococcus faecalis, Pseudomonas putida, and Pseudomonas aeruginosa. These extracts also contained coumarin compounds that destroyed cell membranes and prevented biofilm formation. P. officinalis inhibited Bacillus cereus and P. aeruginosa. The test samples of S. vulgaris contained anthocyanins and organic acids that served as natural preservatives while inhibiting Candida albicans and E. coli. Siberian H. sibiricum, P. officinalis, and S. vulgaris proved to contain a wide range of bioactive compounds that could be used to develop new natural antiseptic and antimicrobial drugs. Despite the confirmed antimicrobial activity, the extracts of these plants require further research to be used in the food industry. So far, their safety status, stability, effect on food sensory profile, and interaction with other ingredients remain unknown.
Keywords
Plant raw material, Pulmonaria officinalis, Heracleum sibiricum, Syringa vulgaris, antimicrobial activity, aqueousalcohol extract, microbial pathogens
REFERENCES
  1. Shah RM, Jadhav SR. Plant-based antimicrobials and their role in food safety. Frontiers in Sustainable Food Systems. 2023;7:1173052. https://doi.org/10.3389/fsufs.2023.1173052
  2. Ermolenko ZM, Fursova NK. Microbiological spoilage of food products and promising ways to combat this phenomenon. Bacteriology. 2018;3(3):46-57. (In Russ.) https://elibrary.ru/ YXAFAL
  3. Quintieri L, Koo OK, Caleb OJ. Fight against food waste: Combating contamination and spoilage. Frontiers in Microbiology. 2023;14:1265477. https://doi.org/10.3389/fmicb.2023.1265477
  4. Ivanova S, Sukhikh S, Popov A, Shishko O, Nikonov I, et al. Medicinal plants: A source of phytobiotics for the feed additives. Journal of Agriculture and Food Research. 2024;16:101172. https://doi.org/10.1016/j.jafr.2024.101172
  5. Winkelstroter LK, Bezirtzoglou E, Tulini FL. Natural compounds and novel sources of antimicrobial agents for food preservation and biofilm control, volume II. Frontiers in Microbiology. 2024;15:1412881. https://doi.org/10.3389/fmicb.2024.1412881
  6. Galie S, Garda-Gutierrez C, Miguelez EM, Villar CJ, Lombo F. Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology. 2018;9:898. https://doi.org/10.3389/fmicb.2018.00898
  7. Andreeva IS, Lobanova IE, Vysochina GI, Solovyanova NA. Comparative assessment of antimicrobial activity of some promising medicinal plants. The flora of Asian Russia: Bulletin of the Central Siberian Botanical Garden SB RAS. 2018;(1):91-99. (In Russ.)
  8. Zakharenko SM. Modern approaches to the prevention of antibiotic-associated suppression of the microflora of the gastrointestinal tract. Lechaschi Vrach. 2010;(11):68. (In Russ.) https://elibrary.ru/SGGHCZ
  9. Avershina E, Shapovalova V, Shipulin G. Fighting antibiotic resistance in hospital-acquired infections: Current state and emerging technologies in disease prevention, diagnostics and therapy. Frontiers in Microbiology. 2021;12:707330. https://doi.org/10.3389/fmicb.2021.707330
  10. Fedorenko EV, Kolomiets ND, Sychik SI. Actual problems of the microbiological safety of food products. Hygiene and Sanitation. 2016;95(9):873-878. (In Russ.) https://library.ru/WWULLX
  11. Nieto G, Martmez-Zamora L, Penalver R, Marin-Iniesta F, Taboada-Rodriguez A, et al. Applications of plant bioactive compounds as replacers of synthetic additives in the food industry. Foods. 2024;13(1):47. https://doi.org/10.3390/ foods13010047
  12. Bangar SP, Chaudhary V, Thakur N, Kajla P, Kumar M, et al. Natural antimicrobials as additives for edible food packaging applications: A review. Foods. 2021;10(10):2282. https://doi.org/10.3390/foods10102282
  13. Pinto L, Tapia-Rodriguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for food quality and safety: Recent views and future challenges. Foods. 2023;12(12):2315. https://doi.org/10.3390/foods12122315
  14. Babich O, Larina V, Krol O, Ulrikh E, Sukhikh S, et al. In vitro study of biological activity of Tanacetum vulgare extracts. Pharmaceutics. 2023;15(2):616. https://doi.org/10.3390/pharmaceutics15020616
  15. Sukhikh S, Babich O, Prosekov A, Patyukov N, Ivanova S. Future of chondroprotectors in the treatment of degene¬rative processes of connective tissue. Pharmaceuticals. 2020;13(9):220. https://doi.org/10.3390/ph13090220
  16. Redondo-Blanco S, Fernandez J, Lopez-Ibanez S, Miguelez EM, Villar CJ, et al. Plant phytochemicals in food preservation: Antifungal bioactivity: A review. Journal of Food Protection. 2020;83(1):163-171. https://doi.org/10.4315/0362-028X.JFP-19-163
  17. Usjak L, Petrovic S, Drobac M, Sokovic M, Stanojkovic T, et al. Essential oils of three cow parsnips - composition and activity against nosocomial and foodborne pathogens and food contaminants. Food & Function. 2017;8(1):278-290. https://doi.org/10.1039/C6FO01698G
  18. Velichkovich NS, Dunchenko NI, Stepanova AA, Kozlova OV, Faskhutdinova ER, et al. The phytochemical composition of Kuzbass medicinal plants. Foods and Raw Materials. 2025;13(2):219-232. https://doi.org/10.21603/2308-4057-2025-2-649
  19. Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, et al. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Frontiers in Microbiology. 2020;11(JAN):566325. https://doi.org/10.3389/fmicb.2020.566325
  20. Culqui-Arce C, Mori-Mestanza D, Fernandez-Jeri AB, Cruzalegui RJ, Zabarburu RCM, et al. Polymers derived from agro-industrial waste in the development of bioactive films in food. Polymers. 2025;17(3):408. https://doi.org/10.3390/polym17030408
  21. Gadeleva HK, Nikitina AA, Danilova OA, Zainullin RA, Kunakova RV, et al. Influence of extracts of plants on microbiological firmness of soft drinks. Beer and Drinks. 2011;(1):28-30. (In Russ.) https://elibrary.ru/NDZJWR
  22. Burak LC, Sapach AN. Innovative food packaging. Scientific review. Technical sciences. 2023;2:50-57. (In Russ.) https://doi.org/10.17513/srts.1434
  23. Zheleznov YA. Zoning of the Kemerovo oblast based on the level of technogenic load and environmental factor. The Bulletin of Irkutsk State University. Series: Earth Sciences. 2021;35:19-32. (In Russ.) https://doi.org/10.26516/2073-3402.2021.35.19
  24. Belashova OV, Kozlova OV, Velichkovich NS, Fokina AD, Yustratov VP, et al. A phytochemical study of the clover growing in Kuzbass. Foods and Raw Materials. 2024;12(1):194-206. https://doi.org/10.21603/2308-4057-2024-1-599
  25. Rodkina EB, Sheremetova SA. Steppe flora in the Kuznetsk basin: Systematic structure. Achievements of science and technology in agro-industrial complex. 2020;34(11):73-78. https://elibrary.ru/IMPDPS
  26. Usjak L, Petrovic S, Drobac M, Sokovic M, Stanojkovic T, et al. Essential oils of three cow parsnips - composition and activity against nosocomial and foodborne pathogens and food contaminants. Food & Function. 2017;8(1):278-290. https://doi.org/10.1039/C6FO01698G
  27. Miladinovic DL, Ilic BS, Mihajilov-Krstev TM, Nikolic DM, Cvetkovic OG, et al. Antibacterial activity of the essential oil of Heracleum sibiricum. Natural Product Communications. 2013;8(9):1309-1311. https://doi.org/10.1177/ 1934578X1300800931
  28. Neagu E, Radu GL, Albu C, Paun G. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centariumum bellatum extracts. Saudi Journal of Biological Sciences. 2018;25(3):578-585. https://doi.org/10.1016/j.sjbs.2016.02.016
  29. Hanganu D, Niculae M, Ielciu I, Olah NK, Munteanu M, et al. Chemical profile, cytotoxic activity and oxidative stress reduction of different Syringa vulgaris L. extracts. Molecules. 2021;26(11):3104. https://doi.org/10.3390/molecules 26113104
  30. Chauhan S, Jaiswal V, Cho YI, Lee HJ. Biological activities and phytochemicals of Lungworts (genus Pulmonaria) focusing on Pulmonaria officinalis. Applied Sciences. 2022;12(13):6678. https://doi.org/10.3390/app12136678
  31. Determining humidity of medici¬nal plant raw materials and medicinal plant preparations. Institute of Pharmacopoeia and Pharmacy Standardization. [cited 2025 Feb 25]. (In Russ.) Available from: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-14/1/1-5/1-5-3/opredelenie-vlazhnosti-lekarstvennogo-rastitelnogo-syrya-i-lekarstvennykh-rastitelnykh-preparatov
  32. Frolova AS, Fokina AD, Milentyeva IS, Asyakina LK, Proskuryakova LA, et al. The biological active substances of Taraxacum officinale and Arctium lappa from the Siberian federal district. International Journal of Molecular Sciences. 2024;25(6):3263. https://doi.org/10.3390/ijms25063263
  33. Borodina EE, Kozlova OV, Boger VYu, Proskuryakova LA, Yustratov VP. Solanaceae leaves as are sources of antioxidants and vitamin D. Food Processing: Techniques and Technology. 2025;55(1):197-213. (In Russ.) https://doi.org/10.21603/2074- 9414-2025-1-2565
  34. Daglia M. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology. 2012;23(2):174-181. https://doi.org/10.1016/j.copbio.2011.08.007
  35. Extracts. Institute of Pharmacopoeia and Pharmacy Standardization. [cited 2025 Feb 25]. (In Russ.) Available from: https://pharma-copoeia.regmed.ru/pharmacopoeia/izdanie-14/1/1-4/1-4-1/ekstrakty/
  36. Zhu FD, Fu X, Ye HC, Ding HX, Gu LS, et al. Antibacterial activities of coumarin-3-carboxylic acid against Acidovorax citrulli. Frontiers in Microbiology. 2023;14;1207125. https://doi.org/10.3389/fmicb.2023.1207125
  37. Babich O, Bakhtiyarova A, Krol O, Samusev I, Tsybulnikova AB, et al. Study of antioxidant properties of extracts and biologically active substances from Calluna vulgaris. Biotechnology. 2023;39(5):70-81. (In Russ.) https://doi.org/10.56304/ S0234275823050022
  38. Krzyzanowska-Kowalczyk J, Pecio L, Moldoch J, Ludwiczuk A, Kowalczyk M. Novel phenolic constituents of Pulmonaria officinalis L. LC-MS/MS comparison of spring and autumn metabolite profiles. Molecules. 2018;23(9):2277. https://doi.org/10.3390/molecules23092277
  39. Sadowska B, Wojcik-Bojek U, Krzyzanowska-Kowalczyk J, Kowalczyk M, Stochmal A, et al. The Pros and Cons of Cystic Fibrosis (CF) patient use of herbal supplements containing Pulmonaria officinalis L. extract: The evidence from an in vitro study on Staphylococcus aureus CF clinical isolates. Molecules. 2019;24(6):1151. https://doi.org/10.3390/ molecules24061151
  40. Krzyzanowska-Kowalczyk J, Kowalczyk M, Ponczek MB, Pecio L, Nowak P, et al. Pulmonaria obscura and Pulmonaria officinalis extracts as mitigators of peroxynitrite-induced oxidative stress and cyclooxygenase-2 inhibitors- in vitro and in silico studies. Molecules. 2021;26(3):631. https://doi.org/10.3390/molecules26030631
  41. Shevchuk OM, Velyaev YO, Paliy IN, Pashtetskaya AV, Soldatov DK, et al. Searching for new plant sources rosemary acid. Bulletin of the State Nikitsky Botanical Gardens. 2024;(150):136-145. (In Russ.) https://elibrary.ru/JGLTPC
  42. Iqbal H, Wright CL, Jones S, da Silva GR, McKillen J, et al. Extracts of Sida cordifolia contain polysaccharides possessing immunomodulatory activity and rosmarinic acid compounds with antibacterial activity. BMC Complementary Medicine and Therapies. 2022;22(1):1-17. https://doi.org/10.1186/s12906-022-03502-7
  43. Gqsecka M, Krzyminska-Brodka A, Magdziak Z, Czuchaj P, Bykowska J. Phenolic compounds and organic acid composition of Syringa vulgaris L. Flowers and infusions. Molecules. 2023;28(13):5159. https://doi.org/10.3390/molecules28135159
  44. Yudina RS, Gordeeva EI, Shoeva OYu, Tikhonova MA, Khlestkina EK. Anthocyanins as functional food components. Vavilov Journal of Genetics and Breeding. 2021;25(2):178-189. (In Russ.) https://doi.org/10.18699/VJ21.022
  45. Dudek MK, Michalak B, Wozniak M, Czerwinska ME, Filipek A, et al. Hydroxycinnamoyl derivatives and secoiridoid glycoside derivatives from Syringa vulgaris flowers and their effects on the pro-inflammatory responses of human neutrophils. Fitoterapia. 2017;121:194-205. https://doi.org/10.1016/j.fitote.2017.07.008
  46. Blinova IP, Deyneka VI, Salasina YU, Oleinitz EY, Deineka LA. Anthocyanins of lilac flowers Syringa vulgaris. Chemistry of plant raw materials. 2023;3:127-132. (In Russ.) https://doi.org/10.14258/jcprm.20230311638
  47. Borges A, Ferreira C, Saavedra MJ, Simoes M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance. 2013;19(4):256-265. https://doi.org/10.1089/mdr.2012.0244
  48. Chen J, Zhong K, Qin S, Jing Y, Liu S, et al. Astragalin: A food-origin flavonoid with therapeutic effect for multiple diseases. Frontiers in Pharmacology. 2023;14:1265960. https://doi.org/10.3389/fphar.2023.1265960
  49. Stojkovic D, Petrovic J, Sokovic M, Glamoclija J, Kukic-Markovic J, et al. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. Journal of the Science of Food and Agriculture. 2013;93(13):3205-3208. https://doi.org/10.1002/jsfa.6156
  50. Arima H, Ashida H, Danno G. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Bioscience, Biotechnology, and Biochemistry. 2002;66(5):1009-1014. https://doi.org/10.1271/bbb.66.1009
  51. Ivanov M, Novovic K, Malesevic M, Dinic M, Stojkovic D, et al. Polyphenols as inhibitors of antibiotic resistant bacteria-mechanisms underlying rutin interference with bacterial virulence. Pharmaceuticals. 2022;15(3):385. https://doi.org/10.3390/ph15030385
  52. Hosseinzadeh Z, Ramazani A, Razzaghi-Asl N. Plants of the genus Heracleum as a source of coumarin and furanocoumarin. Journal of Chemical Reviews. 2019;1(2):78-98. https://doi.org/10.33945/SAMI/JCR.2019.1.7898
  53. Evstropov AN, Burova LG, Shirokikh IV, Lipeeva AV, Schultz EE. Investigation of the antimicrobial activity of coumarin substances against Staphylococcus aureus and Pseudomonas aeruginosa. Bacteriology. 2018;3(2);16-19.
  54. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3:211-221. https://doi.org/10.1007/s11306-007-0082-2
How to quote?
About journal

Download
Contents
Abstract
Keywords
References