ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Volume 51, Issue 1, 2021

4607
Abstract
Introduction. Meat-containing semi-finished minced products demonstrate a wide variety of properties, as they contain both plant and meat components. This heterogeneity makes it difficult to plan the freezing process. In view of the current environmental situation, packaging films used for cold storage should be biodegradable. The effect of low-temperature freezing and storage on biodegradable polymers remains understudied. The research objective was to find the optimal modes for minced-meat semi-finished products frozen in a biopolymer package. Study objects and methods. The study featured zrazy, or meat balls, with vegetable filling and a biopolymer film based on corn starch. It involved a laboratory combination freezing and storage cabinet and an XLW(M) tension tester to establish the physical properties of the film. Results and discussion. The meat-containing semi-finished minced products were vacuum-packaged in biopolymer material and subjected to convection, contact, and combined freezing. The experiments resulted in a new combined method of freezing for biopolymer-packaged semi-finished meat-containing products. The research also tested the strength properties of the CornBag biopolymer film during freezing and cold storage. The paper introduces a graphoanalytic method of calculation of freezing time. Conclusion. The new combined freezing method involved vacuum packaging, air-blast subfreezing, and further freezing on a refrigerated plate. The biopolymer film proved suitable for freezing and cold storage of food products. It keeps the product from drying, reduces vitamin losses, and preserves sensory properties. The optimal storage mode was –18°C, the maximum storage time – 6 months. The improved freezing technology combined freezing method with convective air-blasting and contact freezing on a refrigerated plate for products pre-packaging in a biopolymer vacuum bag. The optimal freezing parameters: temperature = –40°С, time = 85 min, rate = 1.33 cm/h.
4643
Abstract
Introduction. Many strains used in dairy industry are antagonists of harmful microflora. Logically, a successful combination of several cultures can enhance the bactericidal effect. The present research objective was to develop a fermented milk drink using a prebiotic to stimulate a multicomponent starter culture. Study objects and methods. The research featured pure strains of Bifidobacterium bifidum strain No. 791 and Lactobacillus acidophilus (VZ-AP), as well as Bio-fi Pro WR 400 beet fiber. The study involved standard and conventional research methods. Results and discussion. The first stage defined the optimal ratios of B. bifidum and L. acidophilus for a two-component starter culture, as well as the optimal production method and their antibiotic activity. The second stage featured the functional and technological properties of the prebiotic beet fiber and its effect on the development of microorganisms in the starter. The study resulted in the main production parameters and a technological scheme for the production of fermented dairy product. Conclusion. The paper introduces a new technology for production of a functional fermented milk product fortified with probiotics and prebiotics, as well as approved technical documentation. The new functional fermented dairy product was based on a starter culture that combined a liquid concentrate of B. bifidum strain No. 791 and a starter culture of L. acidophilus (VZ-AP). The optimal ratio of microbial cultures was 5:1, respectively. The starter strain proved to have a high antibiotic activity. Prebiotic beet fiber Bio-fi Pro WR 400 could be recommended as a product stabilizer at the optimal amount of 0.7% by weight of standardized milk.
4929
Abstract
Introduction. Improving technologies and providing young farm animals with high-quality feed are the primary tasks for successful reproduction and maintenance of dairy cattle. The research objective was to assess the quality characteristics of colostrum and milk replacers, as well as their technological prospects. Study objects and methods. The research featured colostrum, calf milk replacers (CMR), processing methods, and quality characteristics. The paper introduces an analysis of various sustainable processes of obtaining new CMRs. Results and discussion. The article describes colostrum: recommended intake for young calves, qualitative characteristics, and control methods. It focuses mostly on the microbiological characteristics of colostrum, as well as on its role in developing the immune system of calves and the prospects of enzymatic regulation of its functional properties. Enzymatic regulation is based on deep proteins hydrolysates and a highly active serine protease (alcalase). The authors studied variants of using various enzyme preparations and bacterial starter cultures for obtaining hydrolyzed and fermented colostrum, analyzed the main process indicators of milk replacers with intermediate moisture content, and tested various methods for assessing the fatty acid and protein composition of concentrated milk replacers. Production methods proved to have a significant impact on the indicators in question. Conclusion. Reproduction of the dairy herd genetic potential depends on the diet of the young farm animals, and so does the economy of agricultural production. Enzymatic processing of raw materials proved to be the most promising approach for obtaining products with improved functional properties. Deep colostrum hydrolysates can also be an important part of functional foods for children, athletes, in dietary foods, etc.
3677
Abstract
Introduction. Low-temperature freezing technology extends the shelf life of perishable fruits as it causes a sharp slowdown in the biochemical and microbiological processes in frozen products. However, it cannot provide complete destruction of microorganisms. The present research featured the reaction of apricot microbiota to the technological techniques of shock freezing. The research objective was to study the effect of low-temperature freezing modes (t = –25, –30, and –35°C), storage time (3 and 9 months), methods, and defrosting modes (in air at t = 5 and 22°C; in water at t = 5, 16, and 22°C; under the effect of microwave irradiation) on the surface microflora of apricots. Study objects and methods. The experiment featured apricots of the varieties Uzden, Untsukulskiy Pozdniy, Honobah, Krasnoshchyokiy, and Shalakh. The microbiological profile of defrosted apricots was based on the State Standard. Results and discussion. Fast freezing at t = –25°C provided a better inhibition of epiphytic microflora than at t = –30 and –35°C: aerobic-mesophilic and optionally anaerobic microorganisms – by 65.2–68.6%, yeast – by 61.5–69.0%, and mold – by 59.3–68.4%, compared to their initial content on fresh apricots. During the initial period of refrigeration storage, the number of microorganisms decreased, while the subsequent nine-month storage (t = –18°C) led to a slight increase in microbiota. After nine months of storage, the number of microorganisms on defrosted fruits, depending on the variety, was the following: aerobic-mesophilic and optionally anaerobic microorganisms – 1.2×103–2.0×103 CFU/g, yeast – 14–26 CFU/g, and molds – 75–108 CFU/g. Defrosting of apricots by microwave irradiation resulted in a greater destruction of microorganisms than after traditional thawing in air and water. Conclusion. The results of microbiological studies indicate that the shock freezing technology ensures the production of quick-frozen apricots that meet the requirements of Technical Regulations of the Customs Union No. 021/2011.
4897
Abstract
Introduction. The present research featured industrial sugar crystallization. The article introduces a generalized mathematical model of specific growth rate of sugar crystals depending on temperature, solids, and the purity of solution, as well as on the concentration and average size of crystals. The model includes the probabilistic component of growth rate of monocrystals and the reduced adjustment of the constrained crystal growth depending on the abovementioned as-pects. Study objects and methods. The research focused on mass crystallization of sucrose, including the growth rate of monocrystals and the number of crystals in the fill mass. The obtained experimental data were processed using nonlinear programming. Results and discussion. 421 experiments made it possible to develop a probabilistic mathematical model of specific mass growth rate of sugar monocrystals and its dependence on the solution temperature, purity, and solids content. Model error: ± 11.3%. The model covers the temperature range, concentration of solids, and purity of the solution. The proximity of crystals was calculated according to the dependence of the growth rate on their concentration and the average size (error: ± 1.3%). The adjustment range: concentration of crystals = 5–60%, average size = 0.25–1.50 mm. Conclusion. The present generalized mathematical model of crystallization considered the temperature, as well as the purity and solids content in the fill mass, the concentration of sucrose crystals and their average size. The research compared the effect of linear size and concentration of sugar monocrystals on the calculated and experimental sizes of specific mass growth rate and the dimensionless adjustment of growth rate. The calculated sizes proved to be close to the ex-perimental data, which showed adequacy to the developed crystallization model. The research results can be used to optimize the process of mass sugar crystallization.
4302
Abstract
Introduction. Yoghurt has become one of the most popular acid-induced dairy products in the world. Consumers see yoghurt not only as a tasty, protein-rich, and calcium-fortified dessert, but also as a product that improves intestinal microflora and prevents obesity, metabolic syndrome, type II diabetes, and cardiovascular diseases. The stability of the structure and consistency of yoghurt directly depend on the composition and properties of raw materials, including genetic and technological factors and compliance with temperature storage conditions. Yoghurt formulations include various dairy raw materials, e.g. milk powder. The research objective was to assess the effect of κ-casein gene polymorphism in milk powder on the technological properties of acid-induced milk gels when simulating different temperature storage conditions. Study objects and methods. The research featured yoghurt samples prepared from milk powder of CSN3 gene (AA and BB). Model systems of yoghurt were prepared from dry bulk milk, mixed by mass fraction of protein in the ratio of AA2:BB2 as 75:25, 50:50, and 25:75%, respectively. The experiment involved standard methods, optical methods, dynamic viscometry, and PCR-RFLP. Results and discussion. As the mass fraction of BB dry bulk milk increased, the structural and mechanical properties, dimensional stability, and surface tension increased, too. As the storage temperature fell from 4 ± 2 to 12 ± 2°C, the structural and mechanical properties, dimensional stability, surface tension, and moisture-holding ability decreased while maintaining the previously established dependencies. The CSN3 gene polymorphism proved to have no effect on the curd tension after fermentation. Significant differences between the allelic variants AA and BB became obvious only after complete cooling and structuring of the product. Conclusion. The obtained experimental results and the analysis of related publications suggested an indirect effect of the κ-casein gene polymorphism on the structural and mechanical properties, associated with a genetic effect on the average diameter of casein micelles in the original milk and the resulting biochemical and isothermal processes. The research made it possible to assess the effect of the CSN3 gene polymorphism on the technological properties of dry milk during its processing into fermented milk products.
4205
Abstract
Introduction. The last decade saw a considerable increase in the demand for European cranberry planting material (Oxyccocus palustris Pers.) among consumers of non-timber forest products. Cranberry possesses high nutritional and medicinal value. Cultivars and hybrids of European cranberry prove extremely productive for plantation growth using the method of clonal micropropagation with revitalized planting material. Study objects and methods. The research featured European cranberry plants of the Dar Kostromy cultivar and its hybrid form 1-15-635. The study focused on the effect of various medications and growth regulators on the biometric profile of European cranberry and its adaptation to non-sterile conditions at all stages of in vivo clonal micropropagation. Results and discussion. During the introduction stage, the highest viability belonged to the explants treated with AgNO3 (95–96%) and Lizoformin 3000 (5%) as the main sterilizing solutions at a 10-min exposure and a 5% solution of Ecosterilizer (1:1) at a 20-min exposure (90–95%). During the micropropagation proper, the number, average length, and total growth of shoots increased as the concentration of cytokinin 2ip in the WPM 1/4 nutrient medium rose from 1.0 to 5.0 mg/L. At the stage of in vitro rooting, the maximal number, average length, and total growth of roots in regenerated plants for both cultivars were observed when Kornerost 5.0 mg/L was added to the WPM 1/4 nutrient medium. At the stage of adaptation to in vivo conditions, Micogel 0.2 mg/L contributed to the highest survival rate (94–100%). Conclusion. During clonal micropropagation in vitro, the biometric profile of European cranberry (Oxyccocus palustris Pers.) and its survival rate under non-sterile conditions in vivo proved to depend on various growth-regulating substances and their concentrations.
3904
Abstract
Introduction. The priority task of the food industry is to provide population with functional products since the health of nation and its people largely depends on the diet. New formulations and technologies for meat products broaden the range of functional foods. Flaxseed oil is an excellent source of functional ingredients as it is rich in polyunsaturated fatty acids and tocopherols. The present research featured horsemeat as a promising raw material of high nutritional and biological value. Horsemeat is a traditional food source for many nations. The research objective was to develop a new technology for horsemeat in sauce and to select the optimal thermal processing method. Study objects and methods. The authors tested several methods of heat treatment and used a standard nine-point scale to assess the sensory properties of the finished product. The experiment involved standard physicochemical and organoleptic research methods. The color characteristics were described using digital image processing. Results and discussion. The study delivered a new formulation of sauce with flaxseed oil, which improved the quality of the fat component of the finished product. The new sauce proved to be rich in polyunsaturated fatty acids and possessed high sensory and technological properties. A comparative analysis of the heat treatment methods included traditional frying and stewing, cooking in a steam convection oven, and a sous-vide technology. The sous vide technology appeared to have the best structural-mechanical, physicochemical, and sensory properties. Software processing of digital images made it possible to compare the color of raw, semifinished, and cooked meat samples. The traditional cooking methods of frying and stewing showed the most pronounced changes in the color, while the sous-vide technology demonstrated a smooth color change. As for the quality of the finished product, it proved to satisfy 40% of daily intake for polyunsaturated fatty acids and 20% for tocopherol, which makes the product functional. Conclusion. The new technology made it possible to expand the range of functional meat products. The new digital image processing program helped to register changes in shape and color of meat samples after various heat treatment methods.
4039
Abstract
Introduction. New methods of sterilization with non-thermal atmospheric pressure plasma remain an extremely relevant field of food science. The present research estimated the effect of non-thermal argon plasma on lactic acid bacteria obtained from walnuts. Study objects and method. The non-thermal argon plasma was generated by electrode discharge induced by a coaxial microwave plasmatron at atmospheric pressure. The discharge was generated in a special electrode construction. Its stability was achieved via low gas flow through the discharge gap. Argon consumption was 10 L/min. The study involved Lactobacillus plantarum and Lactobacillus mali in their natural association and vegetative form. Endo’s medium (Endo agar) was inoculated with lactobacilli. 100 μl of the suspension were added into a Petri dish with nutrient medium and carefully rubbed with a spreader. The plates with Endo agar inoculated with lactobacilli were placed under plasma radiation at a distance of 45 mm. The biocidal effect of plasma radiation was estimated by the diameter of the affected areas. After the plasma treatment, the Petri dishes were incubated in an incubator for 24–48 h at 37°C, after which the diameters of the affected areas were measured again. Results and discussion. The paper introduces experimental data on the effect of argon plasma on lactobacilli isolated from food. After treating the surface of inoculated Petri dishes with non-thermal plasma for five minutes, the diameter of the inhibition zone reached the diameter of a Petri dish (80 mm) and exceeded the diameter of the spark gap of the plasma generator (36 mm). The temperature on the surface of the nutrient medium during plasma treatment was within the optimal temperature for lactobacillus growth, i.e. 37.3 ± 0.6°C, which excluded thermal effects. Only a few colonies survived a five-minute treatment. After one-minute treatment, the number of survived colony-forming units was considerably higher. Conclusion. Non-thermal argon plasma treatment proved effective in inhibiting the growth of gram-positive bacteria (Lactobacillus isolated from walnuts) on solid surfaces (agar plates). After five minutes of plasma treatment, the inactivated area (80 mm) exceeded the anode electrode cross section (36 mm) of the plasma generator.
4610
Abstract
Introduction. The main component of quinoa grain is starch, the properties of which affect the quality of quinoa-based food products. There is no information about quinoa starch in the Russian scientific literature. Therefore, the review summarizes and presents foreign knowledge about the isolation, chemical composition, structure, and physicochemical properties of quinoa starch Study objects and methods. The research featured scientific articles and chapters of scientific books on the structure and chemical composition of quinoa published over the past 10 years. The work used empirical and theoretical methods of scientific research. Results and its discussion. Currently, starch from quinoa grain is produced only under laboratory conditions by various methods of grinding and soaking. Most studies point to up to 10% of amylose in quinoa starch. Amylopectin in quinoa starch has a high number of short single chains and a very low number of long single chains, and their ratio is higher than that in other starches. The granule size of quinoa starch is 0.4–2.0 microns, which is significantly smaller than that of most starches. Quinoa starch belongs to polymorphic type A. The gelatinization temperature and enthalpy of quinoa starch are lower than those of amaranth, corn, sorghum, millet, and wheat starch, which is probably due to the fine structure of amylopectin. With an increase in temperature for every 10°C, the swelling force and solubility of quinoa starch increase on average by 21.5–27%. As the temperature rises from 55 to 65°C, the solubility index of quinoa starch increases sharply by 5–10 times. The viscosity of quinoa starch is significantly higher than that of most known starches. It also is more sensitive to enzymes. Conclusion. The work presents the results of scientific research on various matters: methods of starch isolation from quinoa, its chemical composition, and methods of amylose determination; structure of starch grains, their shape, type, and degree of crystallization; physicochemical properties of starch, including gelatinization, swelling, solubility, rheological properties, retrogradation, changes in the transparency of starch gel, and susceptibility to enzymes. The latter determines the choice of technological parameters in the development of formulations and food technologies, including functional foods for people with gluten intolerance (celiac disease). Further studies of the chemical composition of quinoa can help to meet the growing demand for these products and expand the range of the domestic market for gluten-free foods.
4449
Abstract
Introduction. Brewery mash, or brewer’s spent grain (BSG), is a by-product of brewing industry. It is known to contain valuable biologically active substances. However, their extraction is complicated by the presence of various polymers. The research featured various physicochemical methods for obtaining valuable biological compounds from brewery waste. The new method modified complex non-starch polysaccharides, lignin, arabinoxylans, and other high-molecular compounds associated with phenolic compounds. The research objective was to solve the problem of recycling industrial by-products that accumulate in large quantities and require expensive processing or disposal. The paper introduces new technological approaches for deep processing of BSG as a source of secondary raw materials in order to obtain extracts fortified with polyphenolic compounds. Study objects and methods. The research featured BSG from malt subjected to treatment with ECA-activated water (catholyte with pH 9.6 ± 0.1), followed by enzymatic hydrolysis of cellulolytic enzyme preparations and extraction with a polar solvent of the resulting free polyphenolic substances. The experiments were based on standard methods for assessing the content of various biologically active substances. Results and discussion. A 70% water-ethanol solution proved to be optimal at the BSG:extractant ratio of 2:1, process temperature = 50 ± 2°C, and extraction time = 60 ± 5 min. Under the same conditions, 70 %vol. of beer distillate made it possible to extract phenolic acids, flavonoid rutin, irreplaceable and nonessential amino acids, and non-starch polysaccharide β-glucan from the BSG matrix. The BSG treatment with 1M NaOH solution delivered viscous hydrolysates fortified with flavonoids rutin and quercetin, which did not happen when acid hydrolysis was used. The combined use of ECA-treated water (catholyte with pH 9.6 ± 0.1) for 24 ± 0.05 h, combined with biocatalysis with the enzyme preparation Viskoflo MG for 2 ± 0.05 h, made it possible to obtain BSG extracts with a high content of phenolic acids and aldehydes, as well as flavonoid rutin. Conclusion. The study revealed the mechanism of hydrolytic decomposition of BSG non-starch polysaccharides, considering the compounds contained in the extracts. The BSG hydrolysates fortified with various phenolic compounds can be used in various food technologies, e.g., in fermented drinks.
4641
Abstract
Introduction. Plant materials are susceptible to microbial contamination at all stages of the technological process and storage. This problem becomes highly relevant when extracting biologically active compounds from the Inonotus obliquus chaga mushroom. If used in food systems, contaminated extracts may cause their subsequent microbial contamination, as well as deterioration of quality and safety, which inevitably leads to economic losses and health risks. Inonotus obliquus is a popular component of various functional foods; therefore, the microbiological purity of its extracts requires a thorough analysis. In this regard, toxicity in a living test object is another important aspect of the safety studies of extracts and biologically active compounds. Before introducing a new food additive or component into the food system, it has to be tested for toxic properties. Study objects and methods. The research featured aqueous and supercritical CO2-extracts of the Inonotus obliguus chaga mushroom. The aqueous extract was obtained according to the method specified in the State Pharmacopoeia of the USSR. The supercritical CO2 extraction was obtained using a Thar SFE-500F-2-FMC50 supercritical fluid extraction system. Microbiological indicators were determined by standard operating methods. The relative biological value and possible toxic properties were measured by biotesting on Tetrahymena pyriformis. Results and its discussion. During the entire tested storage period, the microbial contamination of the extracts remained at a low level, while the contaminants in the supercritical extract showed signs of microbial deactivation by carbon dioxide. The experiment on the ciliates demonstrated no inhibition of motility and growth, the shape of the cells was oval, even, and the cell walls remained unaffected, which means that the extracts produced no toxic effect. Conclusion. The extracts of the Inonotus obliguus mushroom proved to be biologically valuable and toxicologically safe. The test on Tetrahymena pyriformis showed stable and traceable microbiological indicators. Therefore, aqueous and supercritical CO2 extracts of Inonotus obliguus can be used in food industry.
4166
Abstract
Introduction. Obtaining protein and vitamin fodder is one of the urgent tasks that modern industrial biotechnology has to solve. Another task is a search of novel medium compositions for microbial fermentation that can lower production costs. Russian food industry produces a significant amount of sunflower seed processing byproducts every year. Sunflower meal is a promising source of sunflower protein isolate. The research objective was to develop a new technology for the production of Bacillus megaterium bacterial biomass for fodder purposes. Study objects and methods. The research featured a sunflower protein isolate, an enzyme complex Protex 7L, and a B. megaterium strain (VKPM B-3750). The carbohydrate content was determined using a modified Bertrand method. Amine nitrogen was studied using formol titration, the number of viable cells – by the Koch method, the content of amino acids – by capillary electrophoresis. Results and discussion. When processed with enzyme complexes, sunflower protein can be an alternative source of nitrogen for industrial fermentation. The study featured amino acid of sunflower protein isolate and enzymatic hydrolyzate obtained using Protex 7L. A comparative analysis of the content of amino acids in the hydrolyzate and the protein isolate showed that enzymatic hydrolysis can significantly increase the content of free amino acids in the medium available for microbial accumulation. The research proved that sunflower protein enzymatic hydrolyzate obtained using Protex 7L can be used to cultivate strains of B vitamins producers. Conclusion. Sunflower protein enzymatic hydrolyzate can be used as a nitrogen source for B vitamins producer fermentation and as an alternative to expensive meat peptone. The research involved technical and economic assessment of the B. megaterium fermentation on enzymatic hydrolysates of sunflower protein at a production capacity of 100 kg per year. The cost of the protein-vitamin supplement was calculated as 413 rubles per kg, while the market price could reach 826 rubles per kg. The payback period for capital expenditures was estimated at 1.5 years. Thus, replacing commercial meat peptone with sunflower protein enzymatic hydrolyzate obtained with Protex 7L reduced the cost of 1 kg of feed additive by three times without affecting B. megaterium. Overproduction of B vitamins by the B. megaterium strain on a medium containing sunflower protein hydrolyzate requires optimization of fermentation conditions.
4472
Abstract
Introduction. The traditional model of restaurant business demonstrates an asymmetry between the structure of the complex service provided by restaurants and the structure of the customer payments, as restaurants normally charge only the price of meals while providing customers with a place for eating and offering them waiter services. This asymmetry creates mutual misunderstanding between restaurants and customers and undermines the performance of restaurants. Therefore, it creates a demand for a new model of monetization of restaurant service that would take into account the complex nature of these services. Study objects and methods. The paper reviews the existing practice of restaurant business. It focuses on the case study of the True Cost restaurant chain (Moscow, Russia), which is a typical example of the “true cost” model. Models of monetization are structured on the basis of strategic matrices method. Results and discussion. The author described the non-economic and economic tools that can be used to capture the value created by the complex restaurant service and built a hierarchical model of monetization system. The “true cost” monetization model sets up separate prices for meals and dining room. The economic nature of this model presupposes a direct link between elements of customers’ payments, elements of the complex service provided by restaurants, and elements of cost – fixed and variable. The author defined advantages and disadvantages of the “true cost” model and assessed the possibility of using it in other sectors of service industry. The paper also introduces a structured system of monetization models in restaurant business. Conclusion. The tradition monetization model blurs the nature of the restaurant services and reduces the financial results. Restaurants should implement monetization models that valorize all elements of the complex service. This goal can be chieved by pricing different elements of the complex service separately.
4672
Abstract
Introduction. Population aging is a medical and social problem that receives special attention from the governments of developed and developing countries. The research objective was to assess the content of biologically active substances in fruits and leaves of Vitis amurensis Rupr. harvested in the Amur Region. The authors analyzed the phenolic profile, anti-radical potential, and the possibility of their complex processing for further use in functional foods. Study objects and methods. The author reviewed ten years of domestic and foreign publications, standards, and legislative documents. The research featured leaves and fruits of Vitis amurensis Rupr., collected in various areas of the Amur Region. The composition of biologically active substances was analyzed using potentiometric, titrimetric, colorimetric, and photocolorimetric methods, as well as the method of X-ray fluorescence analysis. Results and discussion. The sugar content in fruits of Vitis amurensis Rupr. was 11.97%, in leaves – 1.14%. In the fruits, the maximum calcium content was 62.57 ± 0.01 mg/100 g. Potassium content was the highest in the leaves (0.105 ± 0.004 mg/100 g). Caftaric acid had the largest content in leaves and fruits: 4.97 ± 0.01 and 125.69 ± 0.32 mg/kg, respectively. The highest content of resveratrol was found in fruits (148.16 ± 1.40 mg/kg), while in leaves it was only 9.87 ± 0.61 mg/kg. Likewise, fruits demonstrated the maximum content of flavonols: quercetin – 136.21 ± 5.60 mg/kg, kaempferol – 1.19 ± 0.01 mg/kg. Conclusion. Vitis amurensis Rupr. is a promising source of bioactive compounds. Due to its comprehensive phytochemical assessment, it can find wider application in nutritive sciences, cosmetic industry, and food combinatorics. Fruits and leaves of Vitis amurensis Rupr. proved to possess a high antioxidant activity due to polyphenols, resveratrol, B vitamins, and vitamin C.
4339
Abstract
Introduction. The Russian Arctic, also called the Far North, attracts a lot of people who work on a fly-in fly-out basis. These temporary residents experience the negative impact of the harsh climate and suffer from unvaried diets and poor ration. Freeze-dried products might be the optimal solution to this problem. The research objective was to find a rationale for the use of freeze-dried long-storage products in the diets of temporary residents in regions with harsh climatic conditions. Study objects and methods. The research featured scientific publications on two topics: 1) nutrition and diet of shift workers in the Far North, 2) development of freeze-dried products for long-term storage in extreme conditions. Results and discussion. Shift workers consume a lot of fats and carbohydrates, while their diet lacks complete proteins, vitamins, minerals, dairy products, and fresh fruits and vegetables. Taking into consideration the high content of sugar and confectionery, the diet ruins the health of the temporary residents and causes alimentary chronic non-infectious diseases. A healthy diet for the Russian Arctic should correspond to the metabolic profile typical of people in chronic environment stress and be complete both quantitatively and qualitatively. Important food products are difficult to deliver to the Far North. As a result, they are microbiologically and chemically contaminated. Therefore, the region needs high-quality functional products with prolonged shelf life. Conclusion. Freeze-dried fermented milk products, fruits, and vegetables can help temporary residents of the Far North to maintain their usual food patterns. Freeze-dried foods have a long shelf life in unregulated temperature conditions, which can solve the issue of food supply even to the most remote settlements.
3945
Abstract
Introduction. With the development of the food and processing industry, the matter of environmental pollution is becoming more and more acute. Environmental protection is based on the principle of rational use of natural resources and sustainable technology. Vegetable pomace is a secondary raw material; its amount depends on the production technology and equipment. The observed positive trend in the gross harvest of vegetables in open ground can increase the number of vegetable processing enterprises and the capacity of existing enterprises. Eventually, waste will start accumulating at processing sites, and it will have to be used as raw materials. The present paper features the content of biologically active substances in pomace of carrots and beets grown on the territory of the Siberian region and introduces options for their further use in functional foods. Study objects and methods. The research featured carrot pomace of the varieties Losinoostrovskaya, Nantskaya, and Queen of Autumn, as well as beet pomace of varieties Cylinder and Bordeaux. All the samples were harvested in the Kemerovo region in 2019. Determination of physical and chemical parameters was carried out using standard methods. Carotenoids, flavonoids, β-cyanine were studied using spectrometry and photocolorimetric method. Results and discussion. The experiment featured the content of bioactive substances in pomace of carrots and beets obtained during industrial processing. The content of carotenoids in carrots (mg of β-carotene per 100 g of dry weight): for Losinoostrovskaya variety – 23.56 ± 0.23; Nantskaya – 25.32 ± 0.18; Queen of Autumn – 20.78 ± 0.25. Flavonoid content (mg of catechol equivalent per 100 g of dry weight): Losinoostrovskaya – 12.02 ± 0.37; Nantskaya – 13.45 ± 0.56; Queen of Autumn – 11.50 ± 0.48. The content of β-cyanine in beets (mg per 100 g of dry weight): Cylinder – 100.0 ± 8.5; Bordeaux – 35.0 ± 1.8. The nutritional value of carrot and beet pomace with a mass fraction of moisture was 10%. The nutritional value of vegetable pomace is due to the high content of dietary fiber; therefore, the raw materials can be considered for functional food production. The content of biologically active substances in vegetable pomace (flavonoids, carotenoids, β-cyanines) can enhance the functional orientation of this secondary raw material when used in food technologies for the production of food of high nutritional value. Conclusion. The results obtained will make it possible to use the biochemical potential of plant raw materials in many aspects, as well as to obtain new functional food products, thereby expanding the range of healthy foods.
3841
Abstract
Introduction. New long-storage flour baking mixes are a promising direction in the development of healthy diets. The research objective was to identify the rational parameters for using continuous vibration mixers in flour production. Study objects and methods. The study featured wheat flour baking mixes. A correlation analysis helped to build mathematical models of the mixing process in vibration mixers using the sequential dilution method. By comparing the smoothing ability of several mixers, the authors identified their feasibility. The research included two full-factor laboratory experiments. Results and discussion. The paper gives a brief review of modern mixing equipment and describes the effect of uneven feeding of bulk materials on the quality of the finished mixes. The vertical vibration mixers proved to be an optimal technical solution. The experiment featured the effect of the amplitude A (m), vibration frequency f (Hz), vibration angle β (°), and the height of the vibrofluidized bed on the process. Conclusion. The research revealed the following optimal technological parameters: A = 0.0046 m, f = 33.48 Hz, the share of food salt = 0.05. Continuous vibration mixers provided uniform high-quality baking mixes.