ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Modified Porous Starch in Development of Biodegradable Composite Polymer Materials

Abstract
Introduction. Modern food industry needs composite polymer materials based on natural compounds that accelerate the biodegradability of packaging materials. Starch is one of the most effective organic fillers. It has an excellent compatibility with synthetic polymers during extrusion. The research objective was to perform a comparative assessment of the physical and mechanical characteristics of thermoplastic starch based on enzymatic modified porous corn starch. The starch included samples both purified and unrefined from reducing substances. The samples were tested in biodegradable film production.
Study objects and methods. The research featured porous starch, hybrid compositions with thermoplastic porous starch (TPS), and films based on low density polyethylene (PLD). The study involved various methods for determining biochemical and structural features of starch, e.g. electron microscopy, and physicomechanical properties of compositions and films.
Results and its discussion. Compared to native starch, porous starch had a 1.6 times higher water-binding capacity and a 4 times greater solubility. Its enzymatic attackability was 24% higher, while its dynamic viscosity was a 1.7 times lower. These properties had a positive effect on the biodegradability of the films. The film samples that had the PLD:TPS ratio of 60:40 and the porous starch ratio of 40:60 demonstrated higher indicators of breaking tensile stress than the native starch samples. When the ratio of PLD:TPS was 70:30, the difference reached 14%; with that of 60:40 – 23%. Similar results were obtained for the break elongation: the indicator increased by 74% at the ratio of 70:30, by 65% at the ratio of 60:40, and by 21% at 40:60. The superior tensile stress indicator of the porous starch samples proved its higher strength properties, while the better break elongation results denoted a greater biodegradability.
Conclusion. Modified starch, unrefined from reducing substances, proved more expedient for TPS and PLD film production. Unlike refined starch, it reduced the biodegradability period of the final product. The biodegradability period can be specified in a prospective study of food properties during storage using the new film.
Keywords
Polysaccharides, starch, hydrolysis, plastic film, biodegradation, hybrid composition, physical and mechanical properties
REFERENCES
  1. Vasil'eva, N. G. Biorazlagaemye polimery / N. G. Vasil'eva // Vestnik Kazanskogo tehnologicheskogo universiteta. – 2013. – T. 16, № 22. – S. 156–157.
  2. Razavi, S. M. A. Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed / S. M. A. Razavi, S. W. Cui, N. Ding // International Journal of Biological Macromolecules. – 2016. – Vol. 83. – P. 142–151. DOI: https://doi.org/10.1016/j.ijbiomac.2015.11.076.
  3. Kwon, S. S. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions / S. S. Kwon, B. J. Kong, S. N. Park // European Journal of Pharmaceutics and Biopharmaceutics. – 2015. – Vol. 92. – P. 146–154. DOI: https://doi.org/10.1016/j.ejpb.2015.02.025.
  4. Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils / D. Salarbashi, S. Tajik, S. Shojaee-Aliabadi [et al.] // Food Chemistry. – 2014. – Vol. 146. – P. 614–622. DOI: https://doi.org/10.1016/j.foodchem.2013.09.014.
  5. Soluble soybean polysaccharide: A new carbohydrate to make a biodegradable film for sustainable green packaging / S. Tajik, Y. Maghsoudlou, F. Khodaiyan [et al.] // Carbohydrate Polymers. – 2013. – Vol. 97, № 2. – P. 817–824. DOI: https://doi.org/10.1016/j.carbpol.2013.05.037.
  6. The study of rheological behavior and safety metrics of natural biopolymers / L. K. Asyakina, V. F. Dolganyuka, D. D. Belova [et al.] // Foods and Raw Materials. – 2015. – Vol. 4, № 1. – P. 70–78. DOI: https://doi.org/10.21179/2308-4057-2016-1-70-78.
  7. Biodegradability and mechanical properties of starch films from Andean crops / F. G. Torres, O. P. Troncoso, C. Torres [et al.] // International Journal of Biological Macromolecules. – 2011. – Vol. 48, № 4. – P. 603–606. DOI: https://doi.org/10.1016/j.ijbiomac.2011.01.026.
  8. Termoplastichnyy krahmal v sostave biorazlagaemoy polimernoy plenki / V. V. Kolpakova, I. S. Usachev, A. S. Sardzhveladze [i dr.] // Konditerskoe i hlebopekarnoe proizvodstvo. – 2018. – T. 174, № 1–2. – S. 21–25.
  9. Application of thermoplastic starch and starch containing waste of food industry in biodegradable polymer compositions / D. Lukin, V. Kolpakova, V. Ananyev [et al.] // Rroceedings of the 12th international conference on polysaccharides-glycoscience. – Prague, 2016. – R. 58–62.
  10. Sovershenstvovanie tehnologii primeneniya termoplastichnogo krahmala dlya biorazlagaemoy polimernoy plenki / V. V. Kolpakova, I. S. Usachev, A. S. Sardzhveladze [i dr.] // Pischevaya promyshlennost'. – 2017. – № 8. – S. 34–38.
  11. Avérous, L. Biodegradable polymers / L. Avérous, E. Pollet // Environmental Silicate Nano-Biocomposites / L. Avérous, E. Pollet. – London : Springer, 2012. – P. 13–39. DOI: https://doi.org/10.1007/978-1-4471-4108-2_2.
  12. Starch films reinforced with mineral clay / H. M. Wilhelm, M. R. Sierakowski, G. P. Souza [et al.] // Carbohydrate Polymers. – 2003. – Vol. 52, № 2. – P. 101–110. DOI: https://doi.org/10.1016/S0144-8617(02)00239-4.
  13. Influence of fibers on the mechanical properties of cassava starch foams / L. G. Carr, D. F. Parra, P. Ponce [et al.] // Journal of Polymers and the Environment. – 2006. – Vol. 14, № 2. – P. 179–183. DOI: https://doi.org/10.1007/s10924-006-0008-5.
  14. Puccini, M. Polyethylene and hydrolyzed collagen blend films produced by blown extrusion / M. Puccini, M. Seggiani, S. Vitolo // Chemical Engineering Transactions. – 2015. – Vol. 43. – P. 1705–1710. DOI: https://doi.org/10.3303/CET1543285.
  15. Bio-based polyethylene-lignin composites containing a pro-oxidant/pro-degradant additive: preparation and characterization / S. K. Samal, E. G. Fernandes, A. Corti [et al.] // Journal of Polymers and the Environment. – 2014. – Vol. 22, № 1. – P. 58–68. DOI: https://doi.org/10.1007/s10924-013-0620-0.
  16. Preparation and characterization of TiO2/SPI composite film / S.-Y. Wang, B.-B. Zhu, D.-Z. Li [et al.] // Materials Letters. – 2012. – Vol. 83. – P. 42–45. DOI: https://doi.org/10.1016/j.matlet.2012.05.104.
  17. Dyshlyuk, L. S. Analysis of the structural and mechanical properties and micromorphological features of polymeric films based on hydrocolloids of vegetable origin used for the production of biodegradable polymers / L. S. Dyshlyuk // Foods and Raw Materials. – 2014. – Vol. 2, № 2. – P. 88–97. DOI: https://doi.org/10.12737/5465.
  18. Othody pischevoy promyshlennosti APK – perspektivnoe syr'e dlya biorazlagaemyh upakovochnyh kompoziciy / V. V. Kolpakova, G. N. Pankratov, A. A. Chevokin [i dr.] // Pischevaya promyshlennost'. – 2008. – № 6. – S. 16–19.
  19. Usage of thermoplastic starch and ultrasound in development of biodegradable polymer film / I. S. Usachev, A. A. Papahin, V. V. Kolpakova [et al.] // Proceedings of the 18th international multidisciplinary scientific geoconference SGEM. – Albena 2018. – R. 1019–1025. DOI: https://doi.org/10.5593/sgem2018/5.2/S20.131.
  20. Vliyanie modificirovannyh krahmalov na strukturu aerirovannyh tvorozhnyh mussov / K. A. Ryazanceva, E. Yu. Agarkova, A. G. Kruchinin [i dr.] // Molochnaya promyshlennost'. – 2017. – № 9. – S. 54–56.
  21. Fruktovyy polufabrikat s modificirovannym poristym krahmalom dlya proizvodstva konditerskih i hlebobulochnyh izdeliy / A. A. Papahin, V. V. Kolpakova, Z. M. Borodina [i dr.] // Hleboprodukty. – 2020. – № 8. – S. 37–40.
  22. Kolpakova, V. Thermoplastic composition with modified porous corn starch of biodegradability properties / V. Kolpakova, I. Usachev, A. Papakhin [et al.] // Proceedings of the GEOLINKS 2019 Multidisciplinary International Scientific Conference. – Athens 2019. – P. 33–41. DOI: https://doi.org/10.32008/geolinks2019/b2/v1/04.
  23. Some physico-chemical and thermodynamic characteristics of maize starches hydrolyzed by glucoamylase / L. A. Wasserman, A. A. Papakhin, Z. M. Borodina [et al.] // Carbohydrate Polymers. – 2019. – Vol. 212. – P. 260–269. DOI: https://doi.org/10.1016/j.carbpol.2019.01.096.
  24. O fermentativnoy atakuemosti razlichnyh vidov krahmala / Z. M. Borodina, N. D. Lukin, A. A. Papahin [i dr.] // Pischevaya promyshlennost'. – 2019. – № 5. – S. 27–32. DOI: https://doi.org/10.24411/0235-2486-2019-10067.
  25. Papahin, A. A. O svoystvah fermentativno modificirovannogo poristogo kukuruznogo krahmala / A. A. Papahin, Z. M. Borodina // Pischevaya promyshlennost'. – 2019. – № 4. – S. 78–79. DOI: https://doi.org/10.24411/0235-2486-2019-10039.
How to quote?
Papakhin AА, Kolpakova VV, Borodina ZМ, Sardzhveladze AS, Vasiliev IYu. Modified Porous Starch in Development of Biodegradable Composite Polymer Materials. Food Processing: Techniques and Technology. 2020;50(3):549–558. (In Russ.). DOI: https://doi.org/10.21603/2074-9414-2020-3-549-558.
About journal

Download
Contents
Abstract
Keywords
References