Abstract
There are a number of technologies and business applications that identify nucleic acids of various microorganisms. Technologies based on DNA analysis are the most promising direction in the molecular-genetic identification of the microbiota in food substrates. The present paper is a review of various aspects of microorganism identification in food substrates, their advantages and disadvantages. It features modern regulatory, scientific, and methodological sources, as well as patented solutions. The authors pay considerable attention to the classical methods and describe the use of polymerase chain reaction (PCR) in microbiota analysis. Then, they trace the development of next-generation sequencing (NGS) of DNA and how it can be used to identify pathogens in food substrates. So far, NGS proves to be the most advantageous method that identifies prokaryotic and eukaryotic microorganisms, as well as pathogens.Keywords
Next-generation sequencing (NGS), molecular genetic methods for identifying microorganisms, control, DNA, microbiotaREFERENCES
- Fenchel T., King G.M., and Blackburn T.H. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling. AcademicPress Publ., 2012. 303 p. DOI: https://doi.org/10.1016/C2010-0-67238-5.
- Tu Q., Yu H., He Z., et al. GeoChip 4: A functional gene-array-based high-throughput environmental technology for microbial community analysis. Molecular Ecology Resources, 2014, vol. 14, no. 5, pp. 914–928. DOI: https://doi.org/10.1111/1755- 0998.12239.
- Mason O.U., Hazen T.C., Borglin S., et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME Journal, 2012, vol. 6, no. 9, pp. 1715–1727. DOI: https://doi.org/10.1038/ ismej.2012.59.
- Wong C.W., Heng C.L.W., Wan Yee L., et al. Optimization and clinical validation of a pathogen detection microarray.Genome Biology, 2007, vol. 8, no. 5, pp. R93. DOI: https://doi.org/10.1186/gb-2007-8-5-r93.
- Norman J.M., Handley S.A., and Virgin H.W. Kingdom-Agnostic Metagenomics and the Importance of Complete Characterization of Enteric Microbial Communities. Gastroenterology, 2014, vol. 146, no. 6, pp. 1459–1469. DOI: https://doi. org/10.1053/j.gastro.2014.02.001.
- Cox M.J., Cookson W.O.C.M., and Moffatt M.F. Sequencing the human microbiome in health and disease. HumanMolecular Genetics, 2013, vol. 22, no. R1, pp. R88–R94. DOI: https://doi.org/10.1093/hmg/ddt398.
- Beuchat L.R. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables.Microbes and Infection, 2002, vol. 4, no. 4, pp. 413–423. DOI: https://doi.org/10.1016/S1286-4579(02)01555-1.
- Samson R.A., Hoekstra E.S., Lund F., Filtenborg O., and Frisvad J.C. Methods for the detection, isolation and characterization of food-borne fungi. In: Samson R.A., Hoekstra E.S., Frisvad J.C. and Filtenborg O. (eds) Introduction fo food – and airborne fungi. Utrecht: Centraalbureau voor Schimmelcultures Publ., 2000. pp. 283–297.
- Houbraken J., Dijksterhuis J., and Samson R.A. Diversity and biology of heat-resistant fungi. In: Wong H.-C. (ed) Stressresponses of Foodborne Microorganisms. Nova Press Publ., 2012. pp. 331–353.
- Ropars J., Dupont J., Fontanillas E., et al. Sex in Cheese: Evidence for Sexuality in the Fungus Penicillium roqueforti. PLoS One, 2012, vol. 7, no. 11. DOI: https://doi.org/10.1371/journal.pone.0049665.
- Schacherer J., Shapiro J.A., Ruderfer D.M., and Kruglyak L. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature, 2009, vol. 458, no. 7236, pp. 342–345. DOI: https://doi.org/10.1038/ nature07670.
- Suprun I.I., Tokmakov S.V., Ageeva N.M., and Nasonov A.I. Approbation of SSR-analysis for DNA-identification of commercial wine yeast strains. Scientific Journal of KubSAU, 2017, no. 125, pp. 151–163. (In Russ.). DOI: https://doi. org/10.21515/1990-4665-125-009.
- Fay J.C. and Benavides J.A. Evidence for Domesticated and Wild Populations of Saccharomyces cerevisiae. PLoSGenetics, 2005, vol. 1, no. 1, pp. 0066–0071. DOI: https://doi.org/10.1371/journal.pgen.0010005.
- Fidalgo M., Barrales R.R., Ibeas J.I., and Jimenez J. Adaptive evolution by mutations in the FLO11 gene. Proceedings of the National Academy of Sciences of the United States of America, 2006, vol. 103, no. 30, pp. 11228–11233. DOI: https://doi. org/10.1073/pnas.0601713103.
- Antonangelo A.T.B.F., Alonso D.P., Ribolla P.E.M., and Colombi D. Microsatellite marker-based assessment of thebiodiversity of native bioethanol yeast strains. Yeast, 2013, vol. 30, no. 8, pp. 307–317. DOI: https://doi.org/10.1002/yea.2964.
- Franco-Duarte R., Bessa D., Gonçalves F., et al. Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production. FEMS Yeast Research, 2017, vol. 17, no. 6. DOI: https://doi.org/10.1093/femsyr/ fox057.
- Moncrief I., Garzon C., Marek S., et al. Development of simple sequence repeat (SSR) markers for discrimination among isolates of Fusarium proliferatum. Journal of Microbiological Methods, 2016, vol. 126, pp. 12–17. DOI: https://doi. org/10.1016/j.mimet.2016.03.013.
- Legras J.-L., Ruh O., Merdinoglu D., and Karst F. Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 2005, vol. 102, no. 1, pp. 73–83. DOI: https://doi. org/10.1016/j.ijfoodmicro.2004.12.007.
- Knight S. and Goddard M.R. Quantifying separation and similarity in a Saccharomyces cerevisiae metapopulation. ISME Journal, 2015, vol. 9, no. 2, pp. 361–370. DOI: https://doi.org/10.1038/ismej.2014.132.
- Cordero-Bueso G., Rodríguez M.E., Garrido C., Cantoral J.M. Rapid and not culture-dependent assay based on multiplex PCR-SSR analysis for monitoring inoculated yeast strains in industrial wine fermentations. Archives of Microbiology, 2017, vol. 199, no. 1, pp. 135–143. DOI: https://doi.org/10.1007/s00203-016-1287-4.
- Teresa Fernández-Espinar M., Esteve-Zarzoso B., Querol A., and Barrio E. RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharamyces: A fast method for species identification and the differentiation of flor yeasts. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 2000, vol. 78, no. 1, pp. 87–97. DOI: https://doi.org/10.1023/A:1002741800609.
- Bokulich N.A. and Mills D.A. Next-generation approaches to the microbial ecology of food fermentations. BMB Reports, 2012, vol. 45, no. 7, pp. 377–389. DOI: https://doi.org/10.5483/BMBRep.2012.45.7.148.
- Esteve-Zarzoso B., Belloch C., Uruburu F., and Querol A. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. International Journal of Systematic Bacteriology, 1999, vol. 49, no. 1, pp. 329–337. DOI: https://doi.org/10.1099/00207713-49-1-329.
- Sun Y. and Liu Y. Investigating of yeast species in wine fermentation using terminal restriction fragment length polymorphism method. Food Microbiology, 2014, vol. 38, pp. 201–207. DOI: https://doi.org/10.1016/j.fm.2013.09.001.
- Frickmann H., Zautner A.E., Moter A., et al. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Critical Reviews in Microbiology, 2017, vol. 43, no. 3, pp. 263–293. DOI: https://doi.org/10.3109/1040 841X.2016.1169990.
- Kermani F.R., Kafi-Abad S.A., Hosseini K.M., et al. Evaluation of the Performance Characteristics of an In-House One Step TaqMan Real Time-Polymerase Chain Reaction Assay for Detection and Quantification of Hepatitis C Virus. Jundishapur Journal of Microbiology, 2017, vol. 10, no. 3. DOI: https://doi.org/10.5812/jjm.42884.
- Speksnijder A.G.C.L., Kowalchuk G.A., De Jong S., et al. Microvariation Artifacts Introduced by PCR and Cloning of Closely Related 16S rRNA Gene Sequences. Applied and Environmental Microbiology, 2001, vol. 67, no. 1, pp. 469–472. DOI: https://doi.org/10.1128/AEM.67.1.469-472.2001.
- Margulies M., Egholm M., Altman W.E. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, vol. 437, no. 7057, pp. 376–380. DOI: https://doi.org/10.1038/nature03959.
- Balasubramanian S. Solexa Sequencing: Decoding Genomes on a Population Scale. Clinical Chemistry, 2015, vol. 61, no. 1, pp. 21–24. DOI: https://doi.org/10.1373/clinchem.2014.221747.
- Liu L., Li Y., Li S., et al. Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012. DOI: https://doi.org/10.1155/2012/251364
- Oliver S.P., Jayarao B.M., and Almeida R.A. Foodborne Pathogens in Milk and the Dairy Farm Environment: Food Safety and Public Health Implications. Foodborne Pathogens and Disease, 2005, vol. 2, no. 2, pp. 115–129. DOI: https://doi. org/10.1089/fpd.2005.2.115.
- Peck M.W. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? Journal of Applied Microbiology, 2006, vol. 101, no. 3, pp. 556–570. DOI: https://doi.org/10.1111/j.1365-2672.2006.02987.x.
- Doyle C.J., Gleeson D., Jordan K., et al. Anaerobic sporeformers and their significance with respect to milk and dairy products. International Journal of Food Microbiology, 2015, vol. 197, pp. 77–87. DOI: https://doi.org/10.1016/j. ijfoodmicro.2014.12.022.
- Tesfaye W., Morales M.L., García-Parrilla M.C., and Troncoso A.M. Wine vinegar: technology, authenticity and quality evaluation. Trends in Food Science and Technology, 2002, vol. 13, no. 1, pp. 12–21. DOI: https://doi.org/10.1016/S0924- 2244(02)00023-7.
- Gullo M. and Giudici P. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. International Journal of Food Microbiology, 2008, vol. 125, no. 1, pp. 46–53. DOI: https://doi.org/10.1016/j. ijfoodmicro.2007.11.076.
- Ilabaca C., Navarrete P., Mardones P., Romero J., and Mas A. Application of culture culture-independent molecular biology based methods to evaluate acetic acid bacteria diversity during vinegar processing. International Journal of Food Microbiology, 2008, vol. 126, no. 1–2, pp. 245–249. DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.05.001.
- Mitsuoka T. Development of functional foods. Bioscience of Microbiota, Food and Health, 2014, vol. 33, no. 3, pp. 117–128. DOI: https://doi.org/10.12938/bmfh.33.117.
- Godálová Z., Kraková L., Puškárová A., et al. Bacterial consortia at different wine fermentation phases of two typical Central European grape varieties: Blaufränkisch (Frankovka modrá) and Grüner Veltliner (Veltlínske zelené). International Journal of Food Microbiology, 2016, vol. 217, pp. 110–116. DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.10.015.
- Edwards R.A. and Rohwer F. Viral metagenomics. Nature Reviews Microbiology, 2005, vol. 3, no. 6, pp. 504–510.DOI: https://doi.org/10.1038/nrmicro1163.
- Logares R., Sunagawa S., Salazar G., et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environmental Microbiology, 2014, vol. 16, no. 9, pp. 2659–2671. DOI: https://doi.org/10.1111/1462-2920.12250.
- Varrone C., Floriotis G., Heggeset T.M.B. Continuous fermentation and kinetic experiments for the conversion of crude glycerol derived from second-generation biodiesel into 1,3 propanediol and butyric acid. Biochemical Engineering Journal, 2017, vol. 128, pp. 149–161. DOI: https://doi.org/10.1016/j.bej.2017.09.012.
- Humblot C. and Guyot J.P. Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Applied and Environmental Microbiology, 2009, vol. 75, no. 13, pp. 4354–4361. DOI: https://doi.org/10.1128/AEM.00451-09.
- Peter-Katalinić J. and Hillenkamp F. MALDI MS: A Practical Guide to Instrumentation, Methods and Applications.Wiley-VCH Publ., 2007. 345 p. DOI: https://doi.org/10.1002/9783527610464.
- Zautner A.E., Masanta W.O., Tareen A.M., et al. Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry. BMC microbiology, 2013, vol. 13. DOI: https://doi.org/10.1186/1471-2180- 13-247.
- Cheng K., Chui H., Domish L., Hernandez D., and Wang G. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics – Clinical Applications, 2016, vol. 10, no. 4, pp. 346–357. DOI: https://doi.org/10.1002/prca.201500086.
- Urwyler S.K. and Glaubitz J. Advantage of MALDI-TOF-MS over biochemical-based phenotyping for microbial identification illustrated on industrial applications. Letters in Applied Microbiology, 2016, vol. 62, no. 2, pp. 130–137. DOI: https:// doi.org/10.1111/lam.12526.
- Drevinek M., Dresler J., Klimentova J., Pisa L., and Hubalek M. Evaluation of sample preparation methods for MALDI- TOF MS identification of highly dangerous bacteria. Letters in Applied Microbiology, 2012, vol. 55, no. 1, pp. 40–46. DOI: https:// doi.org/10.1111/j.1472-765X.2012.03255.x.
- Doan N.T.L., Van Hoorde K., Cnockaert M., et al. Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in Northern Vietnam. Letters in Applied Microbiology, 2012, vol. 55, no. 4, pp. 265–273. DOI: https://doi.org/10.1111/j.1472-765X.2012.03287.x.
- Martinović T., Andjelković U., Gajdošik M.Š. Foodborne pathogens and their toxins. Journal of Proteomics, 2016, vol. 147, pp. 226–235. DOI: https://doi.org/10.1016/j.jprot.2016.04.029.
- Ferrario C., Lugli G.A., Ossiprandi M.C., et al. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens. International Journal of Food Microbiology, 2017, vol. 256, pp. 20–29. DOI: https://doi. org/10.1016/j.ijfoodmicro.2017.05.001.
- Scallan E., Hoekstra R.M., Mahon B.E., Jones T.F., and Griffin P.M. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiology and Infection, 2015, vol. 143, no. 13, pp. 2795–2804. DOI: https://doi.org/10.1017/S0950268814003185.
- European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013.EFSA Journal, 2015, vol. 13, no. 1, pp. 3991–4156. DOI: https://doi.org/10.2903/j.efsa.2015.3991.
- Newell D.G., Koopmans M., Verhoef L., et al. Food-borne diseases – The challenges of 20years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 2010, vol. 139, pp. S3–S15. DOI: https://doi. org/10.1016/j.ijfoodmicro.2010.01.021.
- Ranjbar R., Rahbar M., Naghoni A. A cholera outbreak associated with drinking contaminated well water. Archives of Iranian Medicine, 2011, vol. 14, no. 5, pp. 339–340.
- Mao Z., Zheng H., Wang X., et al. DNA microarray for direct identification of bacterial pathogens in human stoolsamples. Digestion, 2008, vol. 78, no. 2–3, pp. 131–138. DOI: https://doi.org/10.1159/000174465.
- Ranjbar R., Karami A., Farshad S., Giammanco G.M., and Mammina C. Typing methods used in the molecularepidemiology of microbial pathogens: a how-to guide. New Microbiologica, 2014, vol. 37, no. 1, pp. 1–15.
- Velusamy V., Arshak K., Korostynska O., Oliwa K., and Adley C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances, 2010, vol. 28, no. 2, pp. 232–254. DOI: https://doi.org/10.1016/j. biotechadv.2009.12.004.
- Mayo B., Rachid C.T.C.C., Alegría Á., et al. Impact of Next Generation Sequencing Techniques in Food Microbiology.Current Genomics, 2014, vol. 15, no. 4, pp. 293–309. DOI: https://doi.org/10.2174/1389202915666140616233211.
- Ranjan R., Rani A., Metwally A., McGee H.S., and Perkins D.L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochemical and Biophysical Research Communications, 2016, vol. 469, no. 4, pp. 967–977. DOI: https://doi.org/10.1016/j.bbrc.2015.12.083.
- Staden R.A. strategy of DNA sequencing employing computer programs. Nucleic Acids Research, 1979, vol. 6, no. 7, pp. 2601–2610. DOI: https://doi.org/10.1093/nar/6.7.2601.
- Yang X., Noyes N.R., Doster E., et al. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Applied and Environmental Microbiology, 2016, vol. 82, no. 8, pp. 2433–2443. DOI: https://doi.org/10.1128/AEM.00078-16.
- Richardson K.A., Statt S., Wu G., et al. Abstract 5438: Multiplexed ICE COLD-PCR coupled to NGS and ddPCR enables enhanced detection of low-level DNA mutations in tissues and liquid biopsies. Cancer Research, 2015, vol. 75, no. 15 Supplement, pp. 5438–5438. DOI: https://doi.org/10.1158/1538-7445.AM2015-543.
- Perkel J. Guiding our pcr experiments. BioTechniques, 2015, vol. 58, no. 5, pp. 217–221. DOI: https://doi.org/10.2144/000114283.
- Gerdes L., Iwobi A., Busch U., and Pecoraro S. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomolecular Detection and Quantification, 2016, vol. 7, pp. 9–20. DOI: https:// doi.org/10.1016/j.bdq.2015.12.003.
- Rothrock M.J., Hiett K.L., Kiepper B.H., Ingram K., and Hinton A. Quantification of Zoonotic Bacterial Pathogens within Commercial Poultry Processing Water Samples Using Droplet Digital PCR. Advances in Microbiology, 2013, vol. 3, no. 5, pp. 403–411. DOI: https://doi.org/10.4236/aim.2013.35055.
- Kim T.G., Jeong S.Y., Cho K.S. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil. Applied Microbiology and Biotechnology, 2014, vol. 98, no. 13, pp. 6105–6113. DOI: https:// doi.org/10.1007/s00253-014-5794-4.
- Meiser P., Xu Z., Kirsch G., and Jacob C. Systemic Enzyme Therapy: Fact or Fiction? A Review with Focus on Bromelains, Proteolytic Enzymes from the Pineapple Plant. In: Jacob C., Kirsch G., Slusarenko A.J., Winyard P.G., and Burkholz T. (eds) Recent Advances in Redox Active Plant and Microbial Products: From Basic Chemistry to Widespread Applications in Medicine and Agriculture. Springer Netherlands Publ., 2014. 449–467 p. DOI: https://doi.org/10.1007/978-94-017-8953-0.
- Muratovic A.Z., Tröger R., Granelli K., and Hellenäs K.-E. Quantitative Analysis of Cereulide Toxin from Bacillus cereus in Rice and Pasta Using Synthetic Cereulide Standard and 13C -Cereulide Standard – A Short Validation Study. Toxins, 2014, vol. 6, no. 12, pp. 3326–3335. DOI: https://doi.org/10.3390/toxins6123326.
- Stobiecki M., Skirycz A., Kerhoas L., et al. Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS. Metabolomics, 2006, vol. 2, no. 4, pp. 197–219. DOI: https://doi.org/10.1007/s11306-006-0031-5.
- Yang X.-Y., Lu J., Sun X., and He Q.-Y. Application of subproteomics in the characterization of Gram-positive bacteria.Journal of Proteomics, 2012, vol. 75, no. 10, pp. 2803–2810. DOI: https://doi.org/10.1016/j.jprot.2011.12.027.
- Enany S., Yoshida Y., Magdeldin S., et al. Extensive proteomic profiling of the secretome of European community acquired methicillin resistant Staphylococcus aureus clone. Peptides, 2012, vol. 37, no. 1, pp. 128–137. DOI: https://doi. org/10.1016/j.peptides.2012.06.011.
- Field D., O’Connor R., Cotter P.D., Ross, R.P., and Hill C. In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Frontiers in Microbiology, 2016, vol. 7. DOI: https://doi.org/10.3389/ fmicb.2016.00508.
- Quigley L., O’Sullivan O., Stanton C., et al. The complex microbiota of raw milk. FEMS Microbiology Reviews, 2013, vol. 37, no. 5, pp. 664–698. DOI: https://doi.org/10.1111/1574-6976.12030.
- Tarekgne E.K., Skjerdal T., Skeie S., et al. Enterotoxin Gene Profile and Molecular Characterization of Staphylococcus aureus Isolates from Bovine Bulk Milk and Milk Products of Tigray Region, Northern Ethiopia. Journal of Food Protection, 2016, vol. 79, no. 8, pp. 1387–1395. DOI: https://doi.org/10.4315/0362-028X.JFP-16-003.
- Javed I., Ahmed S., Manam S., et al. Production, characterization, and antimicrobial activity of a bacteriocin from newly isolated Enterococcus faecium IJ-31. Journal of Food Protection, 2010, vol. 73, no. 1, pp. 44–52. DOI: https://doi.org/10.4315/0362- 028X-73.1.44.
- Remenant B., Jaffrès E., Dousset X., Pilet M.-F., Zagorec M. Bacterial spoilers of food: Behavior, fitness and functionalproperties. Food Microbiology, 2015, vol. 45, no. PA, pp. 45–53. DOI: https://doi.org/10.1016/j.fm.2014.03.009.
- Lücking G., Stoeckel M., Atamer Z., Hinrichs J., and Ehling-Schulz M. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage. International Journal of Food Microbiology, 2013, vol. 166, no. 2, pp. 270–279. DOI: https://doi.org/10.1016/j.ijfoodmicro.2013.07.004.
- Sattin E., Andreani N.A., Carraro L., et al. Microbial dynamics during shelf-life of industrial Ricotta cheese and identification of a Bacillus strain as a cause of a pink discolouration. Food Microbiology, 2016, vol. 57, pp. 8–15.
- Caporaso J.G., Kuczynski J., Stombaugh J., et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, vol. 7, no. 5, pp. 335–336. DOI: https://doi.org/10.1038/nmeth.f.303.
- Schloss P.D., Westcott S.L., Ryabin T., et al. Introducing mothur: Open-source, platform-independent, community- supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, vol. 75, no. 23, pp. 7537–7541. DOI: https://doi.org/10.1128/AEM.01541-09.
- Maidak B.L., Cole J.R., Lilburn T.G., et al. The RDP-II (Ribosomal Database Project). Nucleic Acids Research, 2001, vol. 29, no. 1, pp. 173–174. DOI: https://doi.org/10.1093/nar/29.1.173.
- Pruesse E., Quast C., Knittel K., et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 2007, vol. 35, no. 21, pp. 7188–7196. DOI: https:// doi.org/10.1093/nar/gkm864
- DeSantis T.Z., Hugenholtz P., Larsen N., et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 2006, vol. 72, no. 7, pp. 5069–5072. DOI: https://doi.org/10.1128/ AEM.03006-05.
- Kõljalg U., Nilsson R.H., Abarenkov K., et al. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 2013, vol. 22, no. 21, pp. 5271–5277. DOI: https://doi.org/10.1111/mec.12481.
- Deshpande V., Wang Q., Greenfield P., et al. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia, 2016, vol. 108, no. 1, pp. 1–5. DOI: https://doi.org/10.3852/14-293.
- Zubkov M.N. Biologicheskie osobennosti bakteriy roda Moraxella i ikh ehtiologicheskaya rolʹ v patologii cheloveka. Soobshchenie II. Kharakteristika biokhimicheskikh svoystv i identifikatsiya [Biological features of bacteria of the genus Moraxella and their etiological role in human pathology. Post II. Characteristics of biochemical properties and identification]. Laboratornoe delo [Laboratory work], 1988, no. 3, pp. 15–18. (In Russ.).
- Zubkov M.N. Kharakteristika serologicheskikh svoystv bakteriy roda Moraxella [Characteristics of the serological properties of bacteria of the genus Moraxella]. Laboratornoe delo [Laboratory work], 1990, no. 7, pp. 64–66. (In Russ.).
- Kalina G.P. and Trukhina G.M. Bakterii roda Moraxella. Ehkologiya [Bacteria of the genus Moraxella. Ecology]. Zhurnal mikrobiologii, ehpidemiologi i immunologii [Journal of Microbiology, Epidemiologists and Immunology], 1987, vol. 64, no. 2, pp. 93–102. (In Russ.).
- Kalina G.P. and Trukhina G.M. Patogenny li morakselly? Problema i ee vozmozhnye resheniya [Are Moraxella pathogens? Problem and its possible solutions]. Zhurnal mikrobiologii, ehpidemiologi i immunologii [Journal of Microbiology, Epidemiologists and Immunology], 1988, vol. 65, no. 1, pp. 80–88. (In Russ.).
- Korotyaev A.I. and Babichev S.A. Meditsinskaya mikrobiologiya, immunologiya i virusologiya [Medical microbiology, immunology, and virology]. St. Peterburg: SpecLit Publ., 2010. 772 p. (In Russ.).
- Pozdeev O.K. Meditsinskaya mikrobiologiya [Medical Microbiology]. Moscow: Geotar-Med Publ., 2001. 778 p. (In Russ.).