ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Determining the Residual Amount of Amphenicol Antibiotics in Milk and Dairy Products

Abstract
Controlling the level of amphenicol antibiotics in animal products is an important task for the contemporary food industry. Amphenicols are widely used in agriculture. Residual antibiotic substances enter the human body with food of animal origin, e.g. milk, and may lead to resistance to antimicrobial drugs. The research objective was to analyze scientific publications on various methods for identifying residual amphenicol antibiotics in milk and dairy products.
The review covered six years of Russian and foreign publications from the PubMed databases of the National Center for Biotechnology Information (USA), Scopus and ScienceDirect databases of the Elsevier, the Web of Science platform, and the domestic electronic library eLibrary.Ru.
Screening and quantification proved to be the main methods for their determination. Chromatographic methods, i.e. various types of high performance liquid chromatography, appeared to be especially effective. These methods often experience problems with sample preparation because milk tends to clog the capillary. Thus, food science needs further studies in the field of milk purification and isolation of amphenicols.
The article describes the main methods for identifying amphenicol antibiotics in milk and dairy products and defines the prospect of further research.
Keywords
Antibiotics, amphenicols, milk, chromatography, biosensors, aptasensors, animal products, antibiotic resistance
REFERENCES
  1. da Cunha BR, Fonseca LP, Calado CRC. Antibiotic discovery: Where have we come from, where do we go? Antibiotics. 2019;8(2). https://doi.org/10.3390/antibiotics8020045
  2. Low CX, Tan LT-H, Mutalib N-SA, Pusparajah P, Goh B-H, Chan K-G, et al. Unveiling the impact of antibiotics and alternative methods for animal husbandry: A review. Antibiotics. 2020;10(5). https://doi.org/10.3390/antibiotics10050578
  3. Gould K. Antibiotics: From prehistory to the present day. Journal of Antimicrobial Chemotherapy. 2016;71(3):572–575. https://doi.org/10.1093/jac/dkv484
  4. Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, et al. A review of the microbial production of bioactive natural products and biologics. Frontiers in Microbiology. 2019;10. https://doi.org/10.3389/fmicb.2019.01404
  5. Jukes TH. Antibiotics in nutrition. New York: Medical Encyclopedia, 1955. 128 p.
  6. Bacanlı M, Basaran N. Importance of antibiotic residues in animal food. Food and Chemical Toxicology. 2019;125:462–466. https://doi.org/10.1016/j.fct.2019.01.033
  7. Baynes RE, Dedonder K, Kissell L, Mzyk D, Marmulak T, Smith G, et al. Health concerns and management of select veterinary drug. Food and Chemical Toxicology. 2016;88:112–122. https://doi.org/10.1016/j.fct.2015.12.020
  8. Hutchings M, Truman A, Wilkinson B. Antibiotics: past, present and future. Current Opinion in Microbiology. 2019;51:72–80. https://doi.org/10.1016/j.mib.2019.10.008
  9. Mackenzie LE. Antibiotics in agriculture: the retail customer perspective. Australian Veterinary Journal. 2019;97(8):292–294. https://doi.org/10.1111/avj.12822
  10. Shulʹga NN, Shulʹga IS, Plavshak LP. Antibiotics in animal husbandry – ways to solve the problem. Trends in the Development of Science and Education. 2018;(35–4):52–55. (In Russ.). https://doi.org/10.18411/lj-28-02-2018-68
  11. Mehl A, Schmidt LJ, Schmidt L, Morlock GE. High-throughput planar solid-phase extraction coupled to orbitrap high-resolution mass spectrometry via the autoTLC-MS interface for screening of 66 multi-class antibiotic residues in food of animal origin. Food Chemistry. 2021;351. https://doi.org/10.1016/j.foodchem.2021.129211
  12. Panin AN, Komarov AA, Kulikovskiy AV, Makarov DA. Problem of antimicrobial resistance of zoonotic bacteria. Veterinary, Zootechnics and Biotechnology. 2017;(5):18–24. (In Russ.).
  13. Yang Y, Babich OO, Sukhikh SA, Zimina MI, Milentyeva IS. Identification of total aromas of plant protein sources. Foods and Raw Materials. 2020;8(2):377–384. https://doi.org/10.21603/2308-4057-2020-2-377-384.
  14. Pastor-Belda M, Campillo N, Arroyo-Manzanares N, Hernández-Córdoba M, Viñas P. Determination of amphenicol antibiotics and their glucuronide metabolites in urine samples using liquid chromatography with quadrupole time-of-flight mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2020;1146. https://doi.org/10.1016/j.jchromb.2020.122122
  15. Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, et al. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 7: Amphenicols: florfenicol and thiamphenicol. EFSA Journal. 2021;19(10). https://doi.org/10.2903/j.efsa.2021.6859
  16. Galyautdinova GG, Malanev AV, Balymova MV, Mukhammetshina AG, Egorov VI. Indication of antibiotics of zincbacytracine in feed by HPLC method. Scientific Notes Kazan Bauman State Academy of Veterinary Medicine. 2020;242(2):36–39. (In Russ.). https://doi.org/10.31588/2413-4201-1883-242-2-36-40
  17. Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, et al. Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Frontiers in Veterinary Science. 2018;4. https://doi.org/10.3389/fvets.2017.00237
  18. Alhaji NB, Aliyu MB, Ghali-Mohammed I, Odetokun IA. Survey on antimicrobial usage in local dairy cows in North-central Nigeria: Drivers for misuse and public health threats. PLoS ONE. 2019;14(12). https://doi.org/10.1371/journal.pone.0224949
  19. Chiesa LM, DeCastelli L, Nobile M, Martucci F, Mosconi G, Fontana M, et al. Analysis of antibiotic residues in raw bovine milk and their impact toward food safety and on milk starter cultures in cheese-making process. LWT. 2020;131. https://doi.org/10.1016/j.lwt.2020.109783
  20. Fedorova MA. The state of the milk and dairy products market abroad and the impact of the coronavirus pandemic on it. Problems of modern agricultural science: Proceedings of the international scientific conference; 2021; Krasnoyarsk. Krasnoyarsk: Krasnoyarsk State Agrarian University; 2021. p. 327–375. (In Russ.).
  21. Galkin AV, Trepalina EA. Identifying pathogens of mastitis and their sensitivity to antibiotics. Efficient Animal Husbandry. 2017;137(7):22–23. (In Russ.).
  22. Potekhin AV, Rusaleyev VS. Monitoring of antibiotic resistance of Acinobacillus pleuropneumoniae isolated in the Russian Federation in 2012–2014. 2016;16(1):24–29. (In Russ.).
  23. Shulʹga NN, Shulʹga IS, Plavshak LP. Antibiotics against humans. BIO. 2019;226(7):6–12. (In Russ.).
  24. Ghosh D, Veeraraghavan B, Elangovan R, Vivekanandan P. Antibiotic resistance and epigenetics: More to it than meets the eye. Antimicrobial Agents and Chemotherapy. 2020;64(2). https://doi.org/10.1128/AAC.02225-19
  25. Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence – Implications for human health and treatment perspectives. EMBO Reports. 2020;21(12). https://doi.org/10.15252/embr.202051034
  26. Rysanova RM, Kokanov SK, Palamarchuk VV. Monitoring the degree of contamination of milk by residual quantities of antibiotics manufacturers Kostanay region. Agricultural Technologies. 2019;1(1):33–41. (In Russ.).
  27. Quintanilla P, Beltrán MC, Molina A, Escriche I, Molina MP. Characteristics of ripened Tronchón cheese from raw goat milk containing legally admissible amounts of antibiotics. Journal of Dairy Science. 2019;102(4):2941–2953. https://doi.org/10.3168/jds.2018-15532
  28. Akter MS, Islam R, Shoeb M, Nahar N. Determination of chloramphenicol in meat samples using liquid chromatography–tandem mass spectrometry. Food Science and Nutrition. 2021;9(10):5670–5675. https://doi.org/10.1002/fsn3.2530
  29. Rezaee M, Khalilian E. Application of ultrasound-assisted extraction followed by solid-phase extraction followed by dispersive liquid-liquid microextraction for the determination of chloramphenicol in chicken meat. Food Analytical Methods. 2018;11(3):759–767. https://doi.org/10.1007/s12161-017-1048-2
  30. Wu S-W, Ko J-L, Liu B-H, Yu F-Y. A sensitive two-analyte immunochromatographic strip for simultaneously detecting aflatoxin M1 and chloramphenicol in milk. Toxins. 2020;12(10). https://doi.org/10.3390/toxins12100637
  31. Sun Y, Wei T, Jiang M, Xu L, Xu Z. Voltammetric sensor for chloramphenicol determination based on a dual signal enhancement strategy with ordered mesoporous carbon@polydopamine and β-cyclodextrin. Sensors and Actuators, B: Chemical. 2018;255:2155–2162. https://doi.org/10.1016/j.snb.2017.09.016
  32. Doğan YN, Pamuk Ş, Gürler Z. Chloramphenicol and sulfonamide residues in sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) fish from aquaculture farm. Environmental Science and Pollution Research. 2020;27(33):41248–41252. https://doi.org/10.1007/s11356-020-09942-3
  33. Zhao M, Li X, Zhang Y, Wang Y, Wang B, Zheng L, et al. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chemistry. 2021;339. https://doi.org/10.1016/j.foodchem.2020.127857
  34. Duan Y, Wang L, Gao Z, Wang H, Zhang H, Li H. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR. Talanta. 2017;165:671–676. https://doi.org/10.1016/j.talanta.2016.12.090
  35. Ma P, Sun Y, Khan IM, Gu QH, Yue L, Wang Z. Structure-switching fluorescence aptasensor for sensitive detection of chloramphenicol. Microchimica Acta. 2020;187(9). https://doi.org/10.1007/s00604-020-04471-9
  36. Zhang Z, Oni O, Liu J. New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection. Nucleic Acids Research. 2017;45(13):7593–7601. https://doi.org/10.1093/nar/gkx517
  37. Ong JJ, Pollard TD, Goyanes A, Gaisford S, Elbadawi M, Basit AW. Optical biosensors – Illuminating the path to personalized drug dosing. Biosensors and Bioelectronics. 2021;188. https://doi.org/10.1016/j.bios.2021.113331
  38. Mehlhorn A, Rahimi P, Joseph Y. Aptamer-based biosensors for antibiotic detection: A review. Biosensors. 2018;8(2). https://doi.org/10.3390/bios8020054
  39. Yan C, Zhang J, Yao L, Xue F, Lu J, Li B, et al. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. Food Chemistry. 2018;260:208–212. https://doi.org/10.1016/j.foodchem.2018.04.014
  40. Sadeghi AS, Ansari N, Ramezani M, Abnous K, Mohsenzadeh M, Taghdisi SM, et al. Optical and electrochemical aptasensors for the detection of amphenicols. Biosensors and Bioelectronics. 2018;118:137–152. https://doi.org/10.1016/j.bios.2018.07.045
  41. Abnous K, Danesh NM, Ramezani M, Emrani AS, Taghdisi SM. A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol. Biosensors and Bioelectronic. 2016;78:80–86. https://doi.org/10.1016/j.bios.2015.11.028
  42. Zhu J-H, Feng Y-G, Wang A-J, Mei L-P, Luo X, Feng J-J. A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays. Biosensors and Bioelectronics. 2021;181. https://doi.org/10.1016/j.bios.2021.113158
  43. Sa-nguanprang S, Phuruangrat A, Bunkoeda O. An optosensor based on a hybrid sensing probe of mesoporous carbon and quantum dots embedded in imprinted polymer for ultrasensitive detection of thiamphenicol in milk. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy. 2022;264. https://doi.org/10.1016/j.saa.2021.120324
  44. Khoshbin Z, Verdian A, Housaindokht MR, Izadyar M, Rouhbakhsh Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosensors and Bioelectronics. 2018;122:263–283. https://doi.org/10.1016/j.bios.2018.09.060
  45. Rizwan M, Mohd-Naim NF, Ahmed MU. Trends and advances in electrochemiluminescence nanobiosensors. Sensors. 2018;18(1). https://doi.org/10.3390/s18010166
  46. Amiripour F, Ghasemi S, Azizi SN. Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal–organic framework for selective detection of chloramphenicol residues in milk and honey. Food Chemistry. 2021;347. https://doi.org/10.1016/j.foodchem.2021.129034
  47. Śniegocki T, Sell B, Giergiel M, Posyniak A. QuEChERS and HPLC-MS/MS combination for the determination of chloramphenicol in twenty two different matrices. Molecules. 2019;24(3). https://doi.org/10.3390/molecules24030384
  48. Vuran B, Ulusoy HI, Sarp G, Yilmaz E, Morgül U, Kabir A, et al. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection. Talanta. 2021;230. https://doi.org/10.1016/j.talanta.2021.122307
  49. Kikuchi H, Sakai T, Teshima R, Nemoto S, Akiyama H. Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry. Food Chemistry. 2017;230:589–593. https://doi.org/10.1016/j.foodchem.2017.03.071
  50. Kurchenko VP, Simonenko ES, Sushynskaya NV, Halavach TN, Petrov AN, Simonenko SV. HPLC identification of mare’s milk and its mix with cow’s milk. Food Processing: Techniques and Technology. 2021;51(2):402–412. (In Russ.). https://doi.org/10.21603/2074-9414-2021-2-402-412.
  51. Guidi LR, Tette PAS, Fernandes C, Silva LHM, Gloria MBA. Advances on the chromatographic determination of amphenicols in food. Talanta. 2017;162:324–338. https://doi.org/10.1016/j.talanta.2016.09.068
  52. Xie Y, Hu Q, Zhao M, Cheng Y, Guo Y, Qian H, et al. Simultaneous determination of erythromycin, tetracycline, and chloramphenicol residue in raw milk by molecularly imprinted polymer mixed with solid-phase extraction. Food Analytical Methods. 2018;11(2):374–381. https://doi.org/10.1007/s12161-017-1008-x
  53. Patyra E, Kwiatek K. Quantification and analysis of trace levels of phenicols in feed by liquid chromatography–mass spectrometry. Chromatographia. 2020;83(6):715–723. https://doi.org/10.1007/s10337-020-03890-3
  54. Amelin VG, Bol’shakov DS. Simultaneous determination of the residual amounts of chloramphenicol and chloramphenicol palmitate in food products using liquid chromatography–mass spectrometry. Moscow University Chemistry Bulletin. 2020;61(6):420–428. (In Russ.).
  55. Britzi M, Schwartsburd F. Development and validation of a high-throughput method for the determination of eight non-steroidal anti-inflammatory drugs and chloramphenicol in milk, using liquid chromatography-tandem mass spectroscopy. International Journal of Analytical and Bioanalytical Methods. 2019;1. https://doi.org/10.35840/2633-8912/2405
  56. Liu B, Xie J, Zhao Z, Wang X, Shan X. Simultaneous determination of 11 prohibited and restricted veterinary drugs and their metabolites in animal-derived foods by ultra-performance liquid chromatography-tandem mass spectrometry coupled with solid phase extraction. Chinese Journal of Chromatography. 2021;39(4):406–414.
How to quote?
Чаплыгина О. С., Просеков А. Ю., Веснина А. Д. Методы оценки остаточного количества антибиотиков группы амфениколы в молоке и молочной продукции // Техника и технология пищевых производств. 2022. Т. 52. № 1. С. 79–88. https://doi.org/10.21603/2074-9414-2022-1-79-88
About journal

Download
Contents
Abstract
Keywords
References