ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Effect of a Complex Plant Additive on Flour Mixes and Wheat Dough

Food additives from non-traditional plant raw materials are a promising source of new fortified bakery products. However, they can affect the protein-starch structure of wheat flour and the rheological profile of the semi-finished bakery products, thus changing the quality of the finished product. The research objective was to study the effect of a novel plant food additive on the moisture, water absorption, and protein-proteinase complex of flour mixes and the rheological properties of wheat dough.
The study featured flour mixes of top-grade wheat flour and the new food complex additive (10, 16, and 22%), as well as dough semi-finished products. The food complex additive consisted of whole grain wheat flour and powders of germinated spelt, pumpkin seeds, oyster mushrooms, and gooseberries in a ratio of 56.3:25.0:17.2:0.9:0.6, respectively. The moisture content was determined by the gravimetric method, while the water absorption and rheological properties were described using a Farinograph-AT. The content of wet gluten was measured by washing, the content of dry gluten was determined by drying, and the quality of gluten was tested according using an IDK-3M device.
The additive decreased the water absorption and the dough development time, contributed to the gluten relaxation, and increased the amount and humidity of wet gluten. At 16 and 22% of the additive, the amount of dry gluten decreased by 3.4 and 4.0%, respectively; at 10%, it increased by 3.3%. The best stability, dough softening degree, and farinograph quality indicator were observed at 16%.
The results can be used to produce new bakery products fortified with the new complex plant food additive, with the amount of water and kneading time adjusted for each particular case. Further research will feature the effect of the additive on the properties of dough semi-finished products during fermentation and proofing.
Bakery products, dough, flour mixture, gluten, rheology, plant raw materials, enrichment
  1. Savelyeva EV, Zinurova EE, Mingaleeva ZSh, Maslov AV, Starovoitova OV, Borisova SV, et al. The study of the possibility of using the additive of plant origin for improvement the quality of yeast and wheat bread. Journal of Environmental Treatment Techniques. 2019;7:1036–1040.
  2. Dubkova NZ, Kharkov VV, Vakhitov MR. Using Jerusalem artichoke powder in functional food production. Foods and Raw Materials. 2021;9(1):69–78.
  3. Yamashev TA, Gematdinova VM, Kanarsky AV. The effect of oat beta-glucan isolate on the rheology of dough from premium wheat flour and the quality of bakery products. Processes and Food Production Equipment. 2020;44(2):62–75. (In Russ.).
  4. Abedi E, Pourmohammadi K. The effect of redox agents on conformation and structure characterization of gluten protein: An extensive review. Food Science and Nutrition. 2020;8(12):6301–6319.
  5. Biesiekierski JR. What is gluten? Journal of Gastroenterology and Hepatology. 2017;32:78–81.
  6. Liu N, Ma S, Li L, Wang X. Study on the effect of wheat bran dietary fiber on the rheological properties of dough. Grain and Oil Science and Technology. 2019;2(1):1–5.
  7. Krekora M, Szymańska-Chargot M, Niewiadomski Z, Miś A, Nawrocka A. Effect of cinnamic acid and its derivatives on structure of gluten proteins – A study on model dough with application of FT-Raman spectroscopy. Food Hydrocolloids. 2020;107.
  8. Sahin M, Akcacik AG, Aydogan S, Hamzaoglu S, Demir B. Evaluation of grain yield, some quality traits and farinograph parameters in bread wheat genotypes grown in irrigated and rainfed. Journal of Global Innovations in Agricultural Sciences. 2019;7(3):119–123.
  9. Akbar QA, Arif S, Yousaf S, Khurshid S, Sahar N. Effects of flour particle size on farinographic properties of wheat dough. Sarhad Journal of Agriculture. 2020;36(4):1136–1140.
  10. Paula T, Gheorghe V, Gabriel-Alexandru C, Elena-Madalina S, Mariana-Gabriela M, Vasilica S. Aspects regarding the representation of farinographic curve to assess wheat flour dough by mathematical equations. INMATEH-Agricultural Engineering. 2021;64(2):385–392.
  11. Onyango C, Luvitaa SK, Lagat K, K’osambo L. Impact of carrageenan copolymers from two red seaweed varieties on dough and bread quality. Journal of Applied Phycology. 2021;33(5):3347–3356.
  12. Migliori M, Correra S. Modelling of dough formation process and structure evolution during farinograph test. International Journal of Food Science and Technology. 2013;48(1):121–127.
  13. Miś A, Nawrocka A, Dziki D. Behaviour of dietary fibre supplements during bread dough development evaluated using novel farinograph curve analysis. Food and Bioprocess Technology. 2017;10(6):1031–1041.
  14. Stojceska V, Butler F. Digitization of farinogram plots and estimation of mixing stability. Journal of Cereal Science. 2008;48(3):729–733.
  15. Nie Y, Zhang P, Deng C, Xu L, Yu M, Yang W, et al. Effects of Pleurotus eryngii (mushroom) powder and soluble polysaccharide addition on the rheological and microstructural properties of dough. Food Science and Nutrition. 2019;7(6):2113–2122.
  16. Lachowicz S, Świeca M, Pejcz E. Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chemistry. 2021;338.
  17. Biel W, Jaroszewska A, Stankowski S, Sobolewska M, Kępińska-Pacelik J. Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. European Food Research and Technology. 2021;247(6):1525–1538.
  18. Hassoon WH, Dziki D, Miś A, Biernacka B. Wheat grinding process with low moisture content: A new approach for wholemeal flour production. Processes. 2021;9(1).
  19. Istrate AM, Stroe SG, Gontariu I, Codină GG. Mixing and pasting characteristics of the pumpkin seeds-wheat flour blends. Scientific Bulletin. Series F. Biotechnologies. 2020;24(2):112–116.
  20. Majeed M, Khan MU, Owaid MN, Khan MR, Shariati MA, Igor P, et al. Development of oyster mushroom powder and its effects on physicochemical and rheological properties of bakery products. Journal of Microbiology, Biotechnology and Food Sciences. 2021;6(5):1221–1227.
  21. Maslov AV, Biktagirova AI, Agzamova LI, Mingaleeva ZSh. Method application of generalized reduced gradient and fractional factor experiment in the composition optimization of the complex food additive for bread of increased nutritional value. Food Industry. 2021;6(3):5–14. (In Russ.).
  22. Dubkova N, Kharkov V, Ziganshin B. Effect of mode amplitude on power consumption in vibrating mixer. Lecture Notes in Mechanical Engineering. 2021;362–369.
  23. Maeda T, Kokawa M, Nango N, Miura M, Araki T, Yamada M, et al. Development of a quantification method of the gluten matrix in bread dough by fluorescence microscopy and image analysis. Food and Bioprocess Technology. 2015;6(8):1349–1354.
  24. Lefebvre J, Mahmoudi N. The pattern of the linear viscoelastic behaviour of wheat flour dough as delineated from the effects of water content and high molecular weight glutenin subunits composition. Journal of Cereal Science. 2007;45(1):49–58.
  25. Hammed AM, Ozsisli B, Ohm J-B, Simsek S. Relationship between solvent retention capacity and protein molecular weight distribution, quality characteristics, and breadmaking functionality of hard red spring wheat flour. Cereal Chemistry. 2015;92(5):466–474.
  26. Chareonthaikij P, Uan-On T, Prinyawiwatkul W. Effects of pineapple pomace fibre on physicochemical properties of composite flour and dough, and consumer acceptance of fibre-enriched wheat bread. International Journal of Food Science and Technology. 2016;51(5):1120–1129.
  27. Rosa NN, Barron C, Gaiani C, Dufour C, Micard V. Ultra-fine grinding increases the antioxidant capacity of wheat bran. Journal of Cereal Science. 2013;57(1):84–90.
  28. Khadiulin R. Reading farinograms in flour parameter studies. Confectionery and Bakery Products. 2019;182(7–8):20–25. (In Russ.).
  29. Zaidul IS, Abd Karim A, Manan DMA, Ariffin A, Nik Norulaini NA, Mohd Omar AK. A farinograph study on the viscoelastic properties of sago/wheat flour dough systems. Journal of the Science of Food and Agriculture. 2004;84(7):616–622.
  30. Lee L, Ng PKW, Whallon JH, Steffe JF. Relationship between rheological properties and microstructural characteristics of nondeveloped, partially developed, and developed doughs. Cereal Chemistry. 2001;78(4):447–452.
  31. Mejía-Morales C, Rodríguez-Macías R, Salcedo-Pérez E, Zamora-Natera JF, Rodríguez-Zaragoza FA, Molina-Torres J, et al. Contrasting metabolic fingerprints and seed protein profiles of Cucurbita foetidissima and C. radicans fruits from feral plants sampled in central Mexico. Plants. 2021;10(11).
  32. Majesty D, Ijeoma E, Winner K, Prince O. Nutritional, anti-nutritional and biochemical studies on the oyster mushroom, Pleurotus ostreatus. EC Nutrition. 2019;14(1):36–59.
  33. Cornet SHV, Bühler JM, Gonçalves R, Bruins ME, van der Sman RGM, van der Goot AJ. Apparent universality of leguminous proteins in swelling and fibre formation when mixed with gluten. Food Hydrocolloids. 2021;120.
How to quote?
Maslov AV, Mingaleeva ZSh, Yamashev TA, Shibaeva NF. Effect of a Complex Plant Additive on Flour Mixes and Wheat Dough. Food Processing: Techniques and Technology. 2022;52(3):511–525. (In Russ.). 9414-2022-3-2385
About journal