ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Phylogenetic Diversity of Microorganisms from the Abakan Arzhan Thermal Spring: Potential Producers of Microbial Energy

Abstract
Microbial energy is a promising area of innovative development in bio- and nanotechnology. Recent studies have revealed that microbial communities of thermal springs have excellent implementation prospects in this area. The present article introduces the microbial diversity of the Abakan Arzhan thermal spring and their isolates that are potentially applicable in microbial electricity synthesis.
The research featured microbial isolates obtained from a microbiota analysis of water and slit samples from the Abakan Arzhan thermal spring. The study involved a metagenomic analysis of the microbial community, as well as such molecular biology methods as nucleic acid extraction, PCR, sequencing, phylogenetic, and bioinformatic analysis. The Silva library was used to compare 16S RNA sequences
Firmicutes, Bacteroides, and Proteobacteria proved to be the dominant phylotypes for water samples, while Firmicutes, Thermomonas, Gammaproteobacteria, and Proteobacteria were the dominant phylotypes for slit samples. The analysis of minor phylotypes confirmed the presence of Geobacter and Shewanella in the samples. The total number of obtained enrichment cultures was nine. Two types of resistant colonies were discovered during the isolation of extremophilic iron-reducing isolates. The samples were grown on a medium containing iron (III) acetate and iron (III) nitrate, and the isolates appeared to be in the process of Fe(III) reduction. The isolates showed an intense iron recovery of 409 and 407 µg/mL after 72 h of cultivation.
The study confirmed the ability of the acquired isolates to reduce iron, making them a priority for future microbial energy research. The isolates belonged to the Shewanella algae and Geobacter sulfurreducens species, as determined by 16S RNA morphology and phylogenetic analyses.
Keywords
Microbial energy, microbial electrosynthesis, microbial fuel cell, extremophilic microorganisms, microbiota, thermal springs
REFERENCES
  1. Baryshnikov GYa, Eliseev VA. Siliceous structure of thermal medical waters in Altai-Sayan highland. Izvestiya of Altai State University. 2009;63(3):41–47. (In Russ.).
  2. Alekin OA. The Abakan Arzhan thermal spring. Proceedings of the State Hydrological Institute. 1932;(47):41–53. (In Russ.).
  3. Oliger TA. The Abakan Arzhan thermal spring. Barnaul; 1981. 204 p. (In Russ.).
  4. Bonch-Osmolovskaya EA, Gorlenko VM, Karpov GA, Starynin DA. Anaerobic destruction of organic matter of microbial mats from the Thermophilic spring (Uzon caldera, Kamchatka). Microbiology. 1987;(56):1022–1028. (In Russ.).
  5. Jiang Y, Song R, Cao L, Su Z, Ma Y, Liu Y. Harvesting energy from cellulose through Geobacter sulfurreducens in Unique ternary culture. Analytica Chimica Acta. 2019;1050:44–50. https://doi.org/10.1016/j.aca.2018.10.059
  6. Gul H, Raza W, Lee J, Azam M, Ashraf M, Kim K-H. Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere. 2021;281. https://doi.org/10.1016/j.chemosphere.2021.130828
  7. Wang H, Qi X, Chen S, Wang X. The efficient treatment of breeding wastewater by an electroactive microbial community in microbial fuel cell. Journal of Environmental Chemical Engineering. 2022;10(2). https://doi.org/10.1016/j.jece.2022.107187
  8. Liang P, Duan R, Jiang Y, Zhang X, Qiu Y, Huang X. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Research. 2018;141:1–8. https://doi.org/10.1016/j.watres.2018.04.066
  9. Singh V. Microbial cell factories engineering for production of biomolecules. Academic Press; 2021. 462 p. https://doi.org/10.1016/C2019-0-03952-0
  10. Sánchez C, Dessì P, Duffy M, Lens PNL. Microbial electrochemical technologies: Electronic circuitry and characterization tools. Biosensors and Bioelectronics. 2020;150. https://doi.org/10.1016/j.bios.2019.111884
  11. Greenman J, Gajda I, You J, Mendis BA, Obata O, Pasternak G, et al. Microbial fuel cells and their electrified biofilms. Biofilm. 2021;3. https://doi.org/10.1016/j.bioflm.2021.100057
  12. Ishii S, Shimoyama T, Hotta Y, Watanabe K. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiology. 2008;8. https://doi.org/10.1186/1471-2180-8-6
  13. Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnology and Bioengineering. 2007;97(6):1398–1407. https://doi.org/10.1002/bit.21366
  14. Ye Y, Liu X, Nealson KH, Rensing C, Qin S, Zhou S. Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms. mBio. 2022;13(1). https://doi.org/10.1128/mbio.03822-21
  15. Hu Y, Wang Y, Han X, Shan Y, Li F, Shi L. Biofilm biology and engineering of Geobacter and Shewanella spp. for energy applications. Frontiers in Bioengineering and Biotechnology. 2021;9. https://doi.org/10.3389/fbioe.2021.786416
  16. Lovley DR, Walker DJF. Geobacter protein nanowires. Frontiers in Microbiology. 2019;10. https://doi.org/10.3389/fmicb.2019.02078
  17. Toporek YJ, Mok JK, Shin HD, Lee BD, Lee MH, DiChristina TJ. Metal reduction and protein secretion genes required for iodate reduction by Shewanella oneidensis. Applied and Environmental Microbiology. 2019;85(3). https://doi.org/10.1128/AEM.02115-18
  18. Jing X, Wu Y, Shi L, Peacock CL, Ashry NM, Gao C, et al. Outer membrane c-type cytochromes OmcA and MtrC play distinct roles in enhancing the attachment of Shewanella oneidensis MR-1 cells to goethite. Applied and Environmental Microbiology. 2020;86(23):1–17. https://doi.org/10.1128/AEM.01941-20
  19. Zarei M, Mir-Derikvand M, Hosseinpour H, Samani TR, Ghasemi R, Fatemi F. U (VI) tolerance affects Shewanella sp. RCRI7 biological responses: growth, morphology and bioreduction ability. Archives of Microbiology. 2021;204(1). https://doi.org/10.1007/s00203-021-02716-6
  20. Thulasinathan B, Nainamohamed S, Ebenezer Samuel JO, Soorangkattan S, Muthuramalingam JB, Kulanthaisamy M, et al. Comparative study on Cronobacter sakazakii and Pseudomonas otitidis isolated from septic tank wastewater in microbial fuel cell for bioelectricity generation. Fuel. 2019;248:47–55. https://doi.org/10.1016/j.fuel.2019.03.060
  21. Pankan AO, Yunus K, Fisher AC. Mechanistic evaluation of the exoelectrogenic activity of Rhodopseudomonas palustris under different nitrogen regimes. Bioresource Technology. 2020;300. https://doi.org/10.1016/j.biortech.2019.122637
  22. Liu C-H, Lee S-K, Ou I-C, Tsai K-J, Lee Y, Chu Y-H, et al. Essential factors that affect bioelectricity generation by Rhodopseudomonas palustris strain PS3 in paddy soil microbial fuel cells. International Journal of Energy Research. 2021;45(2):2231–2244. https://doi.org/10.1002/er.5916
  23. Angelia C, Sanjaya A, Aida, Tanudjaja E, Victor H, Cahyani AD, et al. Characterization of alpha-amylase from aspergillus niger aggregate F isolated from a fermented cassava gatot grown in potato peel waste medium. Microbiology and Biotechnology Letters. 2019;47(3):364–371. https://doi.org/10.4014/mbl.1811.11011
  24. Yang Y, Xu P, Dong S, Yu Y, Chen H, Xiao J. Using watermelon rind and nitrite-containing wastewater for electricity production in a membraneless biocathode microbial fuel cell. Journal of Cleaner Production. 2021;307. https://doi.org/10.1016/j.jclepro.2021.127306
  25. Otero FJ, Chan CH, Bond DR. Identification of different putative outer membrane electron conduits necessary for Fe(III) Citrate, Fe(III) Oxide, Mn(IV) oxide, or electrode reduction by Geobacter sulfurreducens. Journal of Bacteriology. 2018;200(19). https://doi.org/10.1128/JB.00347-18
  26. Boedicker JQ, Gangan M, Naughton K, Zhao F, Gralnick JA, El-Naggar MY. Engineering biological electron transfer and redox pathways for nanoparticle synthesis. Bioelectricity. 2021;3(2):126–135. https://doi.org/10.1089/bioe.2021.0010
  27. Liu X, Holmes DE, Walker DJF, Li Y, Meier D, Pinches S, et al. Cytochrome OmcS is not essential for extracellular electron transport via conductive pili in Geobacter sulfurreducens strain KN400. Applied and Environmental Microbiology. 2022;88(1). https://doi.org/10.1128/AEM.01622-21
  28. Fernandes TM, Morgado L, Turner DL, Salgueiro CA. Protein engineering of electron transfer components from electroactive Geobacter bacteria. Antioxidants. 2021;10(6). https://doi.org/10.3390/antiox10060844
  29. Boone DR, Castenholz RW, Garrity GM. Bergey's manual of systematic bacteriology. Volume One: The Archaea and the deeply branching and phototrophic bacteria. New York: Springe; 2001. 722 p. https://doi.org/10.1007/978-0-387-21609-6
  30. Andreeva A, Budenkova E, Babich O, Sukhikh S, Ulrikh E, Ivanova S, et al. Production, purification, and study of the amino acid composition of microalgae proteins. Molecules. 2021;26(9). https://doi.org/10.3390/molecules26092767
  31. Gadol HJ, Elsherbini J, Kocar BD. Methanogen productivity and microbial community composition varies with iron oxide mineralogy. Frontiers in Microbiology. 2022;12. https://doi.org/10.3389/fmicb.2021.705501
  32. Zhan Y, Yang M, Zhang Y, Yang J, Wang W, Yan L, et al. Iron and total organic carbon shape the spatial distribution pattern of sediment Fe(III) reducing bacteria in a volcanic lake, NE China. World Journal of Microbiology and Biotechnology. 2021;37(9). https://doi.org/10.1007/s11274-021-03125-z
  33. Merino C, Kuzyakov Y, Godoy K, Jofré I, Nájera F, Matus F. Iron-reducing bacteria decompose lignin by electron transfer from soil organic matter. Science of the Total Environment. 2020;761. https://doi.org/10.1016/j.scitotenv.2020.143194
  34. Muyizer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 1993;59(3):695–700. https://doi.org/10.1128/aem.59.3.695-700.1993
  35. Prosekov AYu, Babich OO, Bespomestnykh KV. Identification of industrially important lactic acid bacteria in foodstuffs. Foods and Raw Materials. 2013;1(2):42–45. https://doi.org/10.12737/2053
  36. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. 2013;41:D590–D596. https://doi.org/10.1093/nar/gks1219
  37. Schmidt TM, Arieli B, Cohen Y, Padan E, Strohl WR. Sulfur metabolism in Beggiatoa alba. Journal of bacteriology. 1987;169(12):5466–5472. https://doi.org/10.1128/jb.169.12.5466-5472.1987
  38. Prosekov AYu, Timoshchuk IV, Gorelkina AK. On the issue of the use of waste from water desalting ion exchange units of power plants. Theoretical and Applied Ecology. 2021;(4):127–132. (In Russ.). https://doi.org/10.25750/1995-4301-2021-4-127-132
How to quote?
Dmitrieva AI, Faskhutdinova ER, Drozdova MYu, Kutuzov SS, Proskuryakova LA. Phylogenetic Diversity of Microorganisms from the Abakan Arzhan Thermal Spring: Potential Producers of Microbial Energy. Food Processing: Techniques and Technology. 2022;52(3):458–468. (In Russ.). https://doi.org/10.21603/2074-9414-2022-3-2384
About journal

Download
Contents
Abstract
Keywords
References