Abstract
Rheological measurements are used in the food industry to determine physical characteristics of raw materials, as well as semi-finished and finished products. We aimed to study the effects of ingredients and homogenization parameters on the rheological properties of mayonnaise prepared with pumpkin and rice oils, as well as various honeys.Mayonnaise samples were prepared with non-traditional ingredients, namely cold-pressed pumpkin seed oil, refined rice oil, and four varieties of honey (acacia, linden, forest, and spring). The samples were made in the traditional way on an Ultra Turrax T25 IKA homogenizer (3500–24 000 rpm). The rheological properties of honey and mayonnaise were determined on a Brookfield rotational viscometer.
Forest honey had the highest viscosity, while linden honey had the lowest viscosity, compared to the other honeys. The sample of mayonnaise with forest honey had the highest effective viscosity (3.427 Pa·s) and consistency (101.26 Pa·sn). The use of whey powder provided mayonnaise with the most optimal rheological parameters. Of all carbohydrates, inulin HD had the best effect on the consistency of mayonnaise, with effective viscosity of 2.801 ± 0.001 Pa·s and a flow index of 0.2630 ± 0.0020. Disaccharides provided mayonnaise with higher viscosity and consistency than monosaccharides. Mayonnaise with fresh egg yolk had higher viscosity (2.656 ± 0.002 Pa·s) and consistency (65.640 ± 0.004 Pa·s) than the samples with other egg products. The rheological characteristics of mayonnaise were also determined by the homogenization time and rotor speed. Increasing the time from 2 to 4 min at 10 000 rpm raised the emulsion’s viscosity and consistency from 6.253 to 8.736 Pa·s and from 77.42 to 134.24 Pa·sn, respectively, as well as reduced the flow index from 0.2628 to 0.1995. The rotor speed of 10 000–12 000 rpm was optimal for mayonnaise with pumpkin and rice oils and honey.
The studied samples of mayonnaise with pumpkin and rice oils, as well as honey, belong to non-Newtonian systems and pseudoplastic fluids. The empirical flow curves can be adequately described by the Herschel-Bulkley model. Our results can significantly increase the efficiency of mayonnaise production, improve its quality, and reduce production costs.
Keywords
Mayonnaise, rheological properties, homogenization, honey, vegetable oil, carbohydratesREFERENCES
- Yildirim M, Sumnu G, Sahin S. Rheology, particle-size distribution, and stability of low-fat mayonnaise produced via double emulsions. Food Science and Biotechnology. 2016;25(6):1613–1618. https://doi.org/10.1007/s10068-016-0248-7
- Ghorbani Gorji S, Smyth HE, Sharma M, Fitzgerald M. Lipid oxidation in mayonnaise and the role of natural antioxidants: A review. Trends in Food Science and Technology. 2016;56:88–102. https://doi.org/10.1016/j.tifs.2016.08.002
- Mohammed NK, Ragavan H, Ahmad NH, Hussin ASM. Egg-free low-fat mayonnaise from virgin coconut oil. Foods and Raw Materials. 2022;10(1):76–85. https://doi.org/10.21603/2308-4057-2022-1-76-85
- Averyanova EV, Shkolnikova MN, Chugunova OV. Antioxidant Properties of Triterpenoids in Fat-Containing Products. Food Processing: Techniques and Technology. 2022;52(2):233–243. (In Russ.). https://doi.org/10.21603/2074- 9414-2022-2-2358
- Katsaros G, Tsoukala M, Giannoglou M, Taoukis P. Effect of storage on the rheological and viscoelastic properties of mayonnaise emulsions of different oil droplet size. Heliyon. 2020;6(12) https://doi.org/10.1016/j.heliyon.2020.e05788
- Miguel GA, Jacobsen C, Prieto C, Kempen PJ, Lagaron JM, Chronakis IS, et al. Oxidative stability and physical properties of mayonnaise fortified with zein electrosprayed capsules loaded with fish oil. Journal of Food Engineering. 2019;263:348–358. https://doi.org/10.1016/j.jfoodeng.2019.07.019
- Taslikh M, Mollakhalili-Meybodi N, Alizadeh AM, Mousavi M-M, Nayebzadeh K, Mortazavian AM. Mayonnaise main ingredients influence on its structure as an emulsion. Journal of Food Science and Technology. 2021;59(6):2108–2116. https://doi.org/10.1007/s13197-021-05133-1
- Bredikhin SA, Martekha AN, Andreev VN, Soldusova EA, Karpova NA. Investigation of the structural and mechanical characteristics of mayonnaise with the addition of linseed oil. IOP Conference Series: Earth and Environmental Science. 2022;979(1). https://doi.org/10.1088/1755-1315/979/1/012089
- Armaforte E, Hopper L, Stevenson G. Preliminary investigation on the effect of proteins of different leguminous species (Cicer arietinum, Vicia faba and Lens culinarius) on the texture and sensory properties of egg-free mayonnaise. LWT. 2021;136. https://doi.org/10.1016/j.lwt.2020.110341
- Sakai S, Ikeda N. A numerical analysis to evaluate the emulsifying activity of pasteurized egg yolk. Food Hydrocolloids. 2022;123. https://doi.org/10.1016/j.foodhyd.2021.107087
- Chen J, Cao C, Yuan D, Xia X, Liu Q, Kong B. Impact of different ionic strengths on protein-lipid co-oxidation in whey protein isolate-stabilized oil-in-water emulsions. Food Chemistry. 2022;385. https://doi.org/10.1016/j.foodchem.2022.132700
- Jalali-Jivan M, Abbasi S. Novel approach for lutein extraction: Food grade microemulsion containing soy lecithin & sunflower oil. Innovative Food Science and Emerging Technologies. 2020;66. https://doi.org/10.1016/j.ifset.2020.102505
- Patil U, Benjakul S. Physical and textural properties of mayonnaise prepared using virgin coconut oil/fish oil blend. Food Biophysics. 2019;14(3):260–268. https://doi.org/10.1007/s11483-019-09579-x
- Primacella M, Wang T, Acevedo NC. Characterization of mayonnaise properties prepared using frozen-thawed egg yolk treated with hydrolyzed egg yolk proteins as anti-gelator. Food Hydrocolloids. 2019;96:529–536. https://doi.org/10.1016/j.foodhyd.2019.06.008
- Park J-Y, Choi M-J, Yu H, Choi Y, Park K-M, Chang P-S. Multi-functional behavior of food emulsifier erythorbyl laurate in different colloidal conditions of homogeneous oil-in-water emulsion system. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022;636. https://doi.org/10.1016/j.colsurfa.2021.128127
- Feng T, Fan C, Wang X, Wang X, Xia S, Huang Q. Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing. Food Hydrocolloids. 2022;124. https://doi.org/10.1016/j.foodhyd.2021.107265
- Alvarez-Sabatel S, Martínez de Marañón I, Arboleya J-C. Impact of oil and inulin content on the stability and rheological properties of mayonnaise-like emulsions processed by rotor-stator homogenization or high pressure homogenization (HPH). Innovative Food Science and Emerging Technologies. 2018;48:195–203. https://doi.org/10.1016/j.ifset.2018.06.014
- Raikos V, McDonagh A, Ranawana V, Duthie G. Processed beetroot (Beta vulgaris L.) as a natural antioxidant in mayonnaise: Effects on physical stability, texture and sensory attributes. Food Science and Human Wellness. 2016;5(4):191–198. https://doi.org/10.1016/j.fshw.2016.10.002
- Ovsyannikov VYu, Toroptsev VV, Berestovoy AA, Lobacheva NN, Lobacheva MA, Martekha AN. Development and research of new method for juice extracting from sugar beet with preliminary pressing. IOP Conference Series: Earth and Environmental Science. 2021;640(5). https://doi.org/10.1088/1755-1315/640/5/052011
- Bonilla JC, Clausen MP. Super-resolution microscopy to visualize and quantify protein microstructural organization in food materials and its relation to rheology: Egg white proteins. Food Hydrocolloids. 2022;124. https://doi.org/10.1016/j.foodhyd.2021.107281
- van Eck A, Fogliano V, Galindo-Cuspinera V, Scholten E, Stieger M. Adding condiments to foods: How does static and dynamic sensory perception change when bread and carrots are consumed with mayonnaise? Food Quality and Preference. 2019;73:154–170. https://doi.org/10.1016/j.foodqual.2018.11.013
- Heydari A, Razavi SMA, Farahnaky A. Effect of high pressure-treated wheat starch as a fat replacer on the physical and rheological properties of reduced-fat O/W emulsions. Innovative Food Science and Emerging Technologies. 2021;70. https://doi.org/10.1016/j.ifset.2021.102702
- Kantekin-Erdogan MN, Ketenoglu O, Tekin A. Effect of monoglyceride content on emulsion stability and rheology of mayonnaise. Journal of Food Science and Technology. 2019;56(1):443–450. https://doi.org/10.1007/s13197-018-3506-2
- Aganovic K, Bindrich U, Heinz V. Ultra-high pressure homogenisation process for production of reduced fat mayonnaise with similar rheological characteristics as its full fat counterpart. Innovative Food Science and Emerging Technologies. 2018;45:208–214. https://doi.org/10.1016/j.ifset.2017.10.013
- Yang X, Li A, Yu W, Li X, Sun L, Xue J, et al. Structuring oil-in-water emulsion by forming egg yolk/alginate complexes: Their potential application in fabricating low-fat mayonnaise-like emulsion gels and redispersible solid emulsions. International Journal of Biological Macromolecules. 2020;147:595–606. https://doi.org/10.1016/j.ijbiomac.2020.01.106
- Shen R, Luo S, Dong J. Application of oat dextrine for fat substitute in mayonnaise. Food Chemistry. 2011;126(1):65–71. https://doi.org/10.1016/j.foodchem.2010.10.072
- Seo CW, Yoo B. Preparation of milk protein isolate/κ-carrageenan conjugates by maillard reaction in wet-heating system and their application to stabilization of oil-in-water emulsions. LWT. 2021;139. https://doi.org/10.1016/j.lwt.2020.110542
- Gmach O, Bertsch A, Bilke-Krause C, Kulozik U. Impact of oil type and pH value on oil-in-water emulsions stabilized by egg yolk granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019;581. https://doi.org/10.1016/j.colsurfa.2019.123788
- Kumar Y, Roy S, Devra A, Dhiman A, Prabhakar PK. Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological modeling, effects on optical properties and emulsion stability. LWT. 2021;149. https://doi.org/10.1016/j.lwt.2021.111632
- Bredikhin SA, Andreev VN, Martekha AN, Soldusova EA. Investigation of the process of structure formation during ultrasonic homogenization of milk. IOP Conference Series: Earth and Environmental Science. 2022;954(1). https://doi.org/10.1088/1755-1315/954/1/012014
- Bredihin SA, Andreev VN, Martekha AN, Schenzle MG, Korotkiy IA. Erosion potential of ultrasonic food processing. Foods and Raw Materials. 2021;9(2):335–344. https://doi.org/10.21603/2308-4057-2021-2-335-344
- Li A, Gong T, Hou Y, Yang X, Guo Y. Alginate-stabilized thixotropic emulsion gels and their applications in fabrication of low-fat mayonnaise alternatives. International Journal of Biological Macromolecules. 2020;146:821–831. https://doi.org/10.1016/j.ijbiomac.2019.10.050