ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Microbial Treatment and Oxidative Stress in Agricultural Plants

Abstract
Anthropogenic factors expose agricultural plants to abiotic and biotic stresses, one of which is oxidative stress. Oxidative stress changes cell metabolism, as well as inhibits plant growth and development. Microbial treatment is an environmentally safe method of oxidative stress prevention. The research objective was to study the antioxidant activity of microflora native to coal dumps in order to combat the oxidative stress in crops.
The study featured microorganisms isolated from technogenically disturbed soils. Pure bacterial cultures were isolated by deep inoculation on beef-extract agar. A set of experiments made it possible to define the cultural, morphological, and biochemical properties of cell walls. The antioxidant activity and the amount of indole-3-acetic acid were determined on a spectrophotometer using the ABTS reagent and the Salkowski reagent, respectively. The isolated microorganisms were identified on a Vitek 2 Compact device. The biocompatibility of strains was tested by dripping, while the increase in biomass was measured using a spectrophotometer.
The study revealed ten microbial strains with antioxidant activity ranging from 67.21 ± 3.08 to 91.05 ± 4.17%. The amount of indole-3-acetic acid varied from 8.91 ± 0.32 to 15.24 ± 0.69 mg/mL. The list of microorganisms included Klebsiella oxytoca, Enterobacter aerogenes, Pseudomonas putida, and Bacillus megaterium. The consortium of P. putida and E. aerogenes demonstrated the best results in antioxidant activity, indole-3-acetic acid, and biomass. Its ratio was 2:1 (94.53 ± 4.28%; 15.23 ± 0.56 mg/mL), while the optical density was 0.51 ± 0.02. Extra 2% glycine increased the antioxidant activity by 2.34%, compared to the control. Extra 0.5% L-tryptophan increased the amount of indole-3-acetic acid by 3.12 mg/mL and the antioxidant activity by 2.88%.
The research proved the antioxidant activity of strains isolated from microflora native to coal dumps. The consortium of P. putida and E. aerogenes (2:1) demonstrated the best results. Further research will define its ability to reduce oxidative stress in plants.
Keywords
Antioxidant activity, indole-3-acetic acid, microorganisms, microbial consortium, disturbed soils
FUNDING
The research was part of the state task of “Developing approaches to phytoremediation of post-technological landscapes using plant growth-stimulating rhizobacteria and omics technologies”, agreement No. 075-03-2021-189/4 dated 30.09.2021 (internal number 075-GZ/X4140/679/4).
REFERENCES
  1. Fatemi H, Esmaiel Pour B, Rizwan M. Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environmental Pollution. 2020;266. https://doi.org/10.1016/j.envpol.2020.114982
  2. Rada AO, Kuznetsov AD. Digital inventory of agricultural land plots in the Kemerovo Region. Foods and Raw Materials. 2022;10(2):206–215. https://doi.org/10.21603/2308-4057-2022-2-529
  3. Milentyeva IS, Le VM, Kozlova OV, Velichkovich NS, Fedorova AM, Loseva AI, et al. Secondary metabolites in in vitro cultures of Siberian medicinal plants: Content, antioxidant properties, and antimicrobial characteristics. Foods and Raw Materials. 2021;9(1):153–163. https://doi.org/10.21603/2308-4057-2021-1-153-163
  4. Gu D, Andreev K, Dupre ME. Major trends in population growth around the world. China CDC Weekly. 2021;3(28):604–613. https://doi.org/10.46234/ccdcw2021.160
  5. Kumaraswamy RV, Kumari S, Choudhary RC, Pal A, Raliya R, Biswas P, et al. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules. 2018;113:494–506. https://doi.org/10.1016/j.ijbiomac.2018.02.130
  6. Nizamutdinov TI, Suleymanov AR, Morgun EN, Dinkelaker NV, Abakumov EV. Ecotoxicological analysis of fallow soils at the yamal experimental agricultural station. Food Processing: Techniques and Technology. 2022;52(2):350–360. (In Russ.). https://doi.org/10.21603/2074-9414-2022-2-2369
  7. Fotina NV, Emelianenko VP, Vorob’eva EE, Burova NV, Ostapova EV. Contemporary biological methods of mine reclamation in the Kemerovo Region – Kuzbass. Food Processing: Techniques and Technology. 2021;51(4):869–882. (In Russ.). https://doi.org/10.21603/2074-9414-2021-4-869-882
  8. Liu W-C, Song R-F, Zheng S-Q, Li T-T, Zhang B-L, Gao X, et al. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. Molecular Plant. 2022;15(6):973–990. https://doi.org/10.1016/j.molp.2022.04.009
  9. Kerchev P, van der Meer T, Sujeeth N, Verlee A, Stevens CV, Van Breusegem F, et al. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnology Advances. 2020;40. https://doi.org/10.1016/j.biotechadv.2019.107503
  10. Dias MC, Mariz-Ponte N, Santos C. Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiology and Biochemistry. 2019;137:121–129. https://doi.org/10.1016/j.plaphy.2019.02.005
  11. Drozdova MYu, Pozdnyakova AV, Osintseva MA, Burova NV, Minina VI. The microorganism-plant system for remediation of soil exposed to coal mining. Foods and Raw Materials. 2021;9(2):406–418. https://doi.org/10.21603/2308-4057-2021-2-406-418
  12. Yu X, Shoaib M, Cheng X, Cui Y, Hussain S, Yan J, et al. Role of rhizobia in promoting non-enzymatic antioxidants to mitigate nitrogen-deficiency and nickel stresses in Pongamia pinnata. Ecotoxicology and Environmental Safety. 2022;241. https://doi.org/10.1016/j.ecoenv.2022.113789
  13. AbdElgawad H, Zinta G, Hamed BA, Selim S, Beemster G, Hozzein WN, et al. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environmental Pollution. 2020;258. https://doi.org/10.1016/j.envpol.2019.113705
  14. Ali MA, Fahad S, Haider I, Ahmed N, Ahmad S, Hussain S, et al. Oxidative stress and antioxidant defense in plants exposed to metal/metalloid toxicity. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M, editors. Reactive oxygen, nitrogen and sulfur species in plants: Production, metabolism, signaling and defense mechanisms. John Wiley & Sons; 2019. pp. 353–370. https://doi.org/10.1002/9781119468677.ch15
  15. Khademi Astaneh R, Bolandnazar S, Zaare Nahandi F. Exogenous nitric oxide protect garlic plants against oxidative stress induced by salt stress. Plant Stress. 2022;5. https://doi.org/10.1016/j.stress.2022.100101
  16. Patel M, Parida AK. Salinity alleviates the arsenic toxicity in the facultative halophyte Salvadora persica L. by the modulations of physiological, biochemical, and ROS scavenging attributes. Journal of Hazardous Materials. 2021;401. https://doi.org/10.1016/j.jhazmat.2020.123368
  17. Farooq M, Ullah A, Usman M, Siddique KHM. Application of zinc and biochar help to mitigate cadmium stress in bread wheat raised from seeds with high intrinsic zinc. Chemosphere. 2020;260. https://doi.org/10.1016/j.chemosphere.2020.127652
  18. Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, et al. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety. 2021;211. https://doi.org/10.1016/j.ecoenv.2020.111887
  19. Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–277. https://doi.org/10.1016/j.chemosphere.2018.09.120
  20. Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere. 2019;225:627–638. https://doi.org/10.1016/j.chemosphere.2019.03.026
  21. Alka S, Shahir S, Ibrahim N, Ndejiko MJ, Vo D-VN, Manan FA. Arsenic removal technologies and future trends: A mini review. Journal of Cleaner Production. 2021;278. https://doi.org/10.1016/j.jclepro.2020.123805
  22. Zou L, Liu Y, Wang Y, Hu X. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. Journal of Environmental Management. 2020;263. https://doi.org/10.1016/j.jenvman.2020.110400
  23. Dugan I, Pereira P, Barcelo D, Telak LJ, Filipovic V, Filipovic L, et al. Agriculture management and seasonal impact on soil properties, water, sediment and chemicals transport in a hazelnut orchard (Croatia). Science of the Total Environment. 2022;839. https://doi.org/10.1016/j.scitotenv.2022.156346
  24. Wang H, Yang Q, Ma H, Liang J. Chemical compositions evolution of groundwater and its pollution characterization due to agricultural activities in Yinchuan Plain, northwest China. Environmental Research. 2021;200. https://doi.org/10.1016/j.envres.2021.111449
  25. Chen J, Zhang H, Zhang X, Tang M. Arbuscular mycorrhizal symbiosis mitigates oxidative injury in black locust under salt stress through modulating antioxidant defence of the plant. Environmental and Experimental Botany. 2020;175. https://doi.org/10.1016/j.envexpbot.2020.104034
  26. Dias MC, Mariz-Ponte N, Santos C. Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiology and Biochemistry. 2019;137:121–129. https://doi.org/10.1016/j.plaphy.2019.02.005
  27. Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science. 2016;6. https://doi.org/10.3389/fpls.2015.01143
  28. Ahmad N, Yasin D, Bano F, Fatma T. Ameliorative effects of endogenous and exogenous indole-3-acetic acid on atrazine stressed paddy field cyanobacterial biofertilizer Cylindrospermum stagnale. Scientific Reports. 2022;12(1). https://doi.org/10.1038/s41598-022-15415-z
  29. Šípošová K, Labancová E, Kučerová D, Kollárová K, Vivodová Z. Effects of exogenous application of indole-3-butyric acid on maize plants cultivated in the presence or absence of cadmium. Plants. 2021;10(11). https://doi.org/10.3390/plants10112503
  30. Parsa A, Salout SA. Investigation of the antioxidant activity of electrosynthesized polyaniline/reduced graphene oxide nanocomposite in a binary electrolyte system on ABTS and DPPH free radicals. Journal of Electroanalytical Chemistry. 2016;760:113–118. https://doi.org/10.1016/j.jelechem.2015.11.021
  31. Sarmiento-Lopez LG, López-Meyer M, Maldonado-Mendoza IE, Quiroz-Figueroa FR, Sepúlveda-Jiménez G, Rodríguez-Monroy M. Production of indole-3-acetic acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. Journal of Bioscience and Bioengineering. 2022;134(1):21–28. https://doi.org/10.1016/j.jbiosc.2022.03.007
  32. Voitenkova EV, Matveeva ZN, Makarova MA, Egorova SA, Zabrovskaya AV, Suzhaeva LV, et al. Difficulties in identification of Comamonas kerstersii strains isolated from intestinal microbiota of residents of republic of Guinea and Russian federation. Russian Journal of Infection and Immunity. 2018;8(2):163–168. https://doi.org/10.15789/2220-7619-2018-2-163-168
  33. Volkova GS, Kuksova EV, Serba EM. Investigation of biological interstrains and growing properties of lactic acid bacteria production strains. Relevant Issues of the Dairy Industry, Cross-Industry Technologies, and Quality Management Systems. 2020;1(1):104–109. (In Russ.). https://doi.org/10.37442/978-5-6043854-1-8-2020-1-104-109
  34. Gevorgiz RG, Alisievich AV, Shmatok MG. Estimation of biomass Spirulina platensis (Nordst.) Geitl with use of optical density of culture. Ekologiya morya. 2005;70:96–106. (In Russ.).
  35. Wu Z, Peng Y, Guo L, Li C. Root colonization of encapsulated Klebsiella oxytoca Rs-5 on cotton plants and its promoting growth performance under salinity stress. European Journal of Soil Biology. 2014;60:81–87. https://doi.org/10.1016/j.ejsobi.2013.11.008
  36. Pavlova AS, Leontieva MR, Smirnova TA, Kolomeitseva GL, Netrusov AI, Tsavkelova EA. Colonization strategy of the endophytic plant growth-promoting strains of Pseudomonas fluorescens and Klebsiella oxytoca on the seeds, seedlings and roots of the epiphytic orchid, Dendrobium nobile Lindl. Journal of Applied Microbiology. 2017;123(1):217–232. https://doi.org/10.1111/jam.13481
  37. Saeed Z, Naveed M, Imran M, Bashir MA, Sattar A, Mustafa A, et al. Combined use of Enterobacter sp. MN17 and zeolite reverts the adverse effects of cadmium on growth, physiology and antioxidant activity of Brassica napus. PLoS ONE. 2019;14(3). https://doi.org/10.1371/journal.pone.0213016
  38. Zhang B-X, Li P-S, Wang Y-Y, Wang J-J, Liu X-L, Wang X-Y, et al. Characterization and synthesis of indole-3-acetic acid in plant growth promoting Enterobacter sp. RSC Advances. 2021;11(50):31601–31607. https://doi.org/10.1039/d1ra05659j
  39. Alipour Kafi S, Arabhosseini S, Karimi E, Koobaz P, Mohammadi A, Sadeghi A. Pseudomonas putida P3-57 induces cucumber (Cucumis sativus L.) defense responses and improves fruit quality characteristics under commercial greenhouse conditions. Scientia Horticulturae. 2021;280. https://doi.org/10.1016/j.scienta.2021.109942
  40. Leveau JHJ, Lindow SE. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Applied and Environmental Microbiology. 2005;71(5):2365–2371. https://doi.org/10.1128/AEM.71.5.2365-2371.2005
  41. Pei F, Ma Y, Chen X, Liu H. Purification and structural characterization and antioxidant activity of levan from Bacillus megaterium PFY-147. International Journal of Biological Macromolecules. 2020;161:1181–1188. https://doi.org/10.1016/j.ijbiomac.2020.06.140
  42. Ali B, Sabri AN, Ljung K, Hasnain S. Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World Journal of Microbiology and Biotechnology. 2008;25(3):519–526. https://doi.org/10.1007/s11274-008-9918-9
  43. Zhang H, Wang Z, Li Z, Wang K, Kong B, Chen Q. L-glycine and L-glutamic acid protect Pediococcus pentosaceus R1 against oxidative damage induced by hydrogen peroxide. Food Microbiology. 2022;101. https://doi.org/10.1016/j.fm.2021.103897
How to quote?
Milentyeva IS, Fotina NV, Zharko MYu, Proskuryakova LA. Microbial Treatment and Oxidative Stress in Agricultural Plants. Food Processing: Techniques and Technology. 2022;52(4):750–761. (In Russ.). https://doi.org/10.21603/2074-9414-2022-4-2403
About journal

Download
Contents
Abstract
Keywords
Funding
References