ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Gas Chromatography-Mass Spectrometry of Volatile Organic Impurities in Whiskey

Abstract
Alcoholic beverages are complex multicomponent objects. Their quality and safety control is a serious analytical task that requires new, more accurate instrumental methods, e.g., chromatography-mass spectrometry.
The research involved domestic and foreign whiskey, other alcoholic beverages, and 40% water-alcohol model solutions. The analytical studies were carried out on a Maestro 7820A gas chromatograph GC with an Agilent Technologies 5975 Series MCD mass selective detector, a G4513A autosampler, and a high polarity FFAP capillary column.
The research revealed the optimal parameters of chromatographic separation and mass spectrometric detection. The relative measurement error remained below 25% in the range of 1.0–10 mg/dm3 and 18% in the range of 10–500 mg/dm3. These modes were used to study the composition of the volatile organic impurities. The largest proportion of the total volatile impurities was 34.84–58.08% isoamylol, 17.31–26.76% acetic acid, and 12.50–21.28% isobutanol. Other chemical compounds were not so abundant: 0.34–0.86% isoamyl acetate, 0.13–0.39% 1-butanol, 0.03–0.06% 1-pentanol, 0.40–11.20% ethyl lactate, 0.16–2.74% ethyl caprylate, 1.40–6.44% furfural, 0.18–14.60% ethyl caprate, 0.74–2.97% ethyl laurate, and 1.75–2.39% 2-phenylethanol. The maximal total content of volatile organic impurities was 2040.30 mg/dm3: it was registered in apple samogon. The minimal total content of volatile organic impurities was 392.16 mg/dm3 in the unaged rum distillate sample.
The new method proved highly accurate in determining the qualitative and quantitative composition of twelve volatile consumable components in whiskey. The procedure took 17 min; it can be applied to mass concentrations of volatile impurities in such alcoholic beverages as grape-brandy, rum, tequila, brandy, samogon, rum, and various distillates.
Keywords
Alcoholic beverages, gas chromatography-mass spectrometry, identification, quality, safety, volatile organic impurities
FUNDING
The research was part of a state task, topic No. 041020220006.
REFERENCES
  1. Rudakov OB, Nikitina SYu. Trends in the analytical quality control of the potable ethanol. Analytics and Control. 2017;21(3):180–196. (In Russ.). https://doi.org/10.15826/analitika.2017.21.3.010
  2. Shelekhova NV, Shelekhova TM, Skvortsova LI, Poltavskaya NV. Modern condition and prospects of development of quality control of alcohol products. Food Industry. 2019;(4):117–119. (In Russ.). https://doi.org/10.24411/0235-2486-2019-10059
  3. Rimareva LV, Overchenko MB, Serba EM, Ignatova NI, Shelekhova NV. Influence of phytolytic and proteolytic enzymes on conversion of wheat and corn grain polymers. Agricultural Biology. 2021;56(2):374–383. (In Russ.). https://doi.org/10.15389/agrobiology.2021.2.374eng
  4. Oganesyants LA, Krikunova LN, Dubinina EV, Shvets SD. Evaluation of the fermentation activators use prospects in the technology of corneliancherries distillates. Polzunovskiy Vestnik. 2020;(3):24–30. (In Russ.).
  5. Rimareva LV, Serba EM, Overchenko MB, Shelekhova NV, Ignatova NI, Pavlova AA. Enzyme complexes for activating yeast generation and ethanol fermentation. Foods and Raw Materials. 2022;10(1):127–136. https://doi. org/10.21603/2308-4057-2022-1-127-136.
  6. Marzi Khosrowshahi E, Ghalkhani M, Afshar Mogaddam MR, Farajzadeh MA, Sohouli E, Nemati M. Evaluation of MXene as an adsorbent in dispersive solid phase extraction of several pesticides from fresh fruit juices prior to their determination by HPLC-MS/MS. Food Chemistry. 2022;386. https://doi.org/10.1016/j.foodchem.2022.132773
  7. Dubinina EV, Krikunova LN, Trofimchenko VA, Tomgorova SM. Comparative evaluation of the cornel berry fermentation methods in the production of distillates. Beer and Beverages. 2020;(2):45–49. (In Russ.). https://doi.org/10.24411/2072-9650-2020-10020
  8. Borodulin DM, Reznichenko IYu, Prosin MV, Shalev AV. Comparative analysis of extraction methods in distilled drinks production. IOP Conference Series: Earth and Environmental Science. 2021;640(2). https://doi.org/10.1088/1755-1315/640/2/022060
  9. Borodulin DM, Shalev AV, Safonova EA, Prosin MV, Golovacheva YaS, Vagaytseva EA. Development of new mash filters for craft beer brewing. Food Processing: Techniques and Technology. 2020;50(4):630–641. (In Russ.). https://doi.org/10.21603/2074-9414-2020-4-630-641
  10. Nikitina SYu, Shahov SV, Gordienko AS. Experience in implementing a new technology for the joint production of rectified ethyl alcohol and alcohol distillate from fermented grain raw materials. Beer and Beverages. 2020;(4):10–15. (In Russ.). https://doi.org/10.24411/2072-9650-2020-10037
  11. Bessonov VV, Bogachuk MN, Bokov DO, Makarenko MM, Malinkin AD, Sokurenko MS, et al. Databases of the chemical composition of foods in the era of digital nutrition science. Problems of Nutrition. 2020;89(4):211–219. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10058
  12. Mizanbekova SK, Bogomolova IP, Shatohina NM. Prospects for digital and innovative technologies in management competitiveness of enterprises. Food Processing: Techniques and Technology. 2020;50(2):372–382. (In Russ.). https://doi.org/10.21603/2074-9414-2020-2-372-382
  13. Buglass AJ. Handbook of alcoholic beverages: Technical, analytical and nutritional aspects. John Wiley & Sons; 2011. 1208 p. https://doi.org/10.1002/9780470976524
  14. Oganesyants LA, Panasyuk AL, Kuz'mina EI, Sviridov DA. Use of modern instrumental analysis methods for establishing geographical place of wine products origin. Beer and Beverages. 2019;(4):59–64. (In Russ.). https://doi.org/10.24411/2072-9650-2019-10002
  15. Oganesyants LA, Panasyuk AL, Kuzmina EI, Ganin MYu. Isotopes of carbon, oxygen, and hydrogen ethanol in fruit wines. Food Processing: Techniques and Technology. 2020;50(4):717–725. (In Russ.). https://doi.org/10.21603/2074-9414-2020-4-717-725
  16. Cui Y, Lai G, Wen M, Han Z, Zhang L. Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV-visible spectroscopy and mass spectrometry. Food Chemistry. 2022;386. https://doi.org/10.1016/j.foodchem.2022.132788
  17. Shelekhova NV, Shelekhova TM. Study of an ethanol extract of oak wood by capillary electrophoresis, gas chromatography, and chromatography-mass spectrometry. Sorption and Chromatography Processes. 2021;21(6):868–878. (In Russ.).
  18. Lebedev AT. Mass spectrometry in organic chemistry. Moscow: BINOM. Laboratoriya znaniy; 2003. 493 p. (In Russ.).
  19. Su D, He J-J, Zhou Y-Z, Li Y-L, Zhou H-J. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics. Food Chemistry. 2022;373. https://doi.org/10.1016/j.foodchem.2021.131587
  20. Pavlidis DE, Mallouchos A, Ercolini D, Panagou EZ, Nychas G-E. A volatilomics approach for off-line discrimination of minced beef and pork meat and their admixture using HS-SPME GC/MS in tandem with multivariate data analysis. Meat Science. 2019;151:43–53. https://doi.org/10.1016/j.meatsci.2019.01.003
  21. Zaikin VG, Borisov RS. Review. Mass spectrometry as the most important analytical basis for a number of omics sciences. Mass Spectrometry. 2021;18(1):4–31. (In Russ.).
How to quote?
Shelekhova NV, Shelekhova TM, Skvortsova LI, Poltavskaya NV. Gas Chromatography-Mass Spectrometry of Volatile Organic Impurities in Whiskey. Food Processing: Techniques and Technology. 2022;52(4):787–796. (In Russ.). https://doi.org/10.21603/2074-9414-2022-4-2406
About journal

Download
Contents
Abstract
Keywords
Funding
References