Affiliation
a Самарский государственный технический университет, Самара
Copyright ©Baharev et al. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0. (
http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.
Abstract
The original flavor and other sensory properties are important for alcoholic drinks made of fruits or berries. Strawberries, with their exceptional sensory and nutritional profile, are an excellent raw material for functional alcoholic beverages. The article describes the aroma compounds that develop in dry and sweet strawberry alcohol during fermentation.
The research featured strawberries of the Brilla variety (Fragaria Brilla) processed into dry and sweet alcoholic beverages. The physicochemical parameters of the distillates were determined using the method of gas chromatography (Kristall-2000M, Russia). The isolation of aroma components involved the method of fluid-fluid extraction. The method of gas chromatographymass spectrometry (Agilent, USA) made it possible to analyze the components of the extract.
The physicochemical indicators complied with State Standard GOST 59942-2021. The gas chromatography analysis revealed substances typical of alcoholic fermentation. The aroma compounds in dry/sweet alcoholic beverages were compared with those in three different strawberry varieties. The test identified 61 aroma compounds. Alcohols, esters, furans, and hydrocarbons remained the same as in the raw strawberries. Alcohols (≤ C6), ethyl esters of carboxylic acids, furans, and carboxylic acids developed during fermentation. Aldehydes, ketones, and terpenes were completely destroyed by yeast during fermentation. The obtained results confirmed the high sensory potential of strawberries and improved the technologies of fruit alcohol production. Further research will focus on the transformation of aroma compounds at different fermentation stages.
Keywords
Berry,
strawberry,
Fragaria Brilla,
aroma compounds,
aroma profile,
fermentation,
fruit alcoholic beverages,
fluid-fluid extraction
REFERENCES
- Vergauwen D, de Smet I. The strawberry tales: Size matters. Trends in Plant Science. 2019;24(1):1–3. https://doi.org/ 10.1016/j.tplants.2018.10.007
- Ulrich D, Komes D, Olbricht K, Hoberg E. Diversity of aroma patterns in wild and cultivated Fragaria accessions. Genetic Resources and Crop Evolution. 2007;54:1185–1196. https://doi.org/10.1007/s10722-006-9009-4
- Lara I, García P, Vendrell M. Post-harvest heat treatments modify cell wall composition of strawberry (Fragaria×ana- nassa Duch.) fruit. Scientia Horticulturae. 2006;109(1):48–53. https://doi.org/10.1016/j.scienta.2006.03.001
- Langer SE, Oviedo NC, María M, Burgos JL, Martínez GA, et al. Effects of heat treatment on enzyme activity and expression of key genes controlling cell wall remodeling in strawberry fruit. Plant Physiology and Biochemistry. 2018;130:334–344. https://doi.org/10.1016/j.plaphy.2018.07.015
- Richardson DG, Kosittrakun M. Off-flavour development of apples, pears, berries, and plums under anaerobiosis and partial reversal in air. In: Russell LR, Margaret ML, editors. Fruit Flavors. WA: ACS Publications; 1995. vol. 596, pp. 211– 223. https://doi.org/10.1021/bk-1995-0596.ch019
- Li C, Wu H, Masisi K, Malunga LN, Song Y. Strawberries. In: Jaiswal AK, editor. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables. London: Academic Press; 2020. pp. 423–435. https://doi.org/10.1016/B978- 0-12-812780-3.00026-X
- Hui YH. Handbook of Fruits and Fruit Processing. Iowa: Blackwell Publishing; 2006. 697 p. https://doi.org/10.1002/ 9780470277737
- Lim TK. Edible medicinal and non-medicinal plants: Volume 4, Fruits. London, NY: Springer Dordrecht; 2012. 1023 p. https://doi.org/10.1007/978-94-007-4053-2
- Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, et al. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition. 2012;28(1):9–19. https://doi.org/10.1016/j.nut.2011.08.009
- Danyo EK, Ivantsova MN. Fruit phytochemicals: Antioxidant activity and health-promoting properties. Foods and Raw Materials. 2025;13(1):58–72. https://doi.org/10.21603/2308-4057-2025-1-623
- Vendel I, Hertog M, Nicolaï B. Fast analysis of strawberry aroma using SIFT-MS: A new technique in postharvest research. Postharvest Biology and Technology. 2019;152:127–138. https://doi.org/10.1016/j.postharvbio.2019.03.007
- Larsen M, Poll L. Odour thresholds of some important compounds in strawberries. Zeitschrift für Lebensmittel- Untersuchung und Forschung. 1992;195:120–123. https://doi.org/10.1007/BF01201770
- Larsen M, Poll L, Olsen C. Evaluation of the aroma composition of some strawberry (Fragaria ananassa Duch) cultivars by use of odour threshold values. Zeitschrift für Lebensmittel-Untersuchung und Forschung. 1992;195:536–539. https://doi.org/10.1007/BF01204558
- Zhao J, Liu J, Wang F, Wang S, Feng H, et al. Volatile constituents and ellagic acid formation in strawberry fruits of selected cultivars. Food Research International. 2020;138(Part A):109767. https://doi.org/10.1016/j.foodres.2020.109767
- Perez A, Olias R, Luances P, Sanz C. Biosynthesis of strawberry aroma compounds through amino acid metabolism. Journal of Agricultural and Food Chemistry. 2002;50(14):4037–4042. https://doi.org/10.1021/jf011465r
- Azodanlou R, Darbellay C, Luisier J-L, Villettaz J-C, Amado R. Quality assessment of strawberries (Fragaria species). Journal of Agricultural and Food Chemistry. 2003;51(3):715–721. https://doi.org/10.1021/jf0200467
- Ulrich D, Hoberg E, Rapp A, Kecke S. Analysis of strawberry flavour – Discrimination of aroma types by quantification of volatile compounds. Zeitschrift für Lebensmittel-Untersuchung und Forschung. 1997;205:218–223. https://doi.org/10.1007/ s002170050154
- Urruty L, Giraudel J-L, Lek S, Roudeillac P, Montury M. Assessment of strawberry aroma through SPME/GC and ANN methods. Classification and discrimination of varieties. Journal of Agricultural and Food Chemistry. 2002;50(11):3129–3136. https://doi.org/10.1021/jf0116799
- Hakala MA, Lapvetelainen AT, Kallio HP. Volatile compounds of selected strawberry varieties analyzed by purge- and-trap headspace GC-MS. Journal of Agricultural and Food Chemistry. 2002;50(5):1133–1142. https://doi.org/10.1021/ jf0111256
- Zabetakis I, Holden MA. Strawberry flavour: Analysis and biosynthesis. Journal of the Science of Food and Agriculture. 1997;74(4):421–434. https://doi.org/10.1002/(SICI)1097-0010(199708)74:4%3C421::AID-JSFA817%3E3.0.CO;2-6
- Fischer N, Hammerschmidt FJ. A contribution to the analysis of fresh strawberry flavour. Chemie, Mikrobiologie, Technologie der Lebensmitte. 1992;14:141–148.
- da Silva MDRG, das Neves HJC. Complementary use of hyphenated purge-and-trap gas chromatography techniques and sensory analysis in the aroma profiling of strawberries (Fragaria ananassa). Journal of Agricultural and Food Chemistry. 1999;47(11):4568–4573. https://doi.org/10.1021/jf9905121
- Ménager I, Jost M, Aubert C. Changes in physicochemical characteristics and volatile constituents of strawberry (Cv. Cigaline) during maturation. Journal of Agricultural and Food Chemistry. 2004;52(5):1248–1254. https://doi.org/10.1021/ jf0350919
- Jetti RR, Yang E, Kurnianta A, Finn C, Qian MC. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. Journal of Food Science. 2007;72(7):487–496. https://doi.org/10.1111/j.1750-3841.2007.00445.x
- Pérez AG, Rios JJ, Sanz C, Olías JM. Aroma components and free aminoacids in strawberry variety Chandler during ripening. Journal of Agricultural and Food Chemistry. 1992;40(11):2232–2235. https://doi.org/10.1021/jf00023a036
- Ferreira V, Bueno M, Franco-Luesma E, Culleré L, Fernández-Zurbano P. Key changes in wine aroma active compounds during bottle storage of spanish red wines under different oxygen levels. Journal of Agricultural and Food Chemistry. 2014;62(41):10015–10027. https://doi.org/10.1021/jf503089u
- Sadoudi M, Tourdot-Maréchal R, Rousseaux S, Steyer D, Gallardo-Chacón JJ, et al. Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiology. 2012;32(2):243–253. https://doi.org/10.1016/j.fm.2012.06.006
- Feng Y, Liu M, Ouyang Y, Zhao X, Ju Y, et al. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area. Food & Nutrition Research. 2015;59:29290. https://doi.org/10.3402/ fnr.v59.29290
- Joshi VK, Sharma S, Bhushan S. Effect of method of preparation and cultivar on the quality of strawberry wine. Acta Alimentaria. 2005;34(4):339–353. https://doi.org/10.1556/AAlim.34.2005.4.2
- Kafkas E, Cabaroglu T, Selli S, Bozdoğan A, Kürkçüoğlu M, et al. Identification of volatile aroma compounds of strawberry wine using solid‐phase microextraction techniques coupled with gas chromatography-mass spectrometry. Flavour and Fragrance Journal. 2006;21(1):68–71. https://doi.org/10.1002/ffj.1503
- Li X, Xia X, Wang Z, Wang Y, Dai Y, et al. Cloning and expression of Lactobacillus brevis β‐glucosidase and its effect on the aroma of strawberry wine. Journal of Food Processing and Preservation. 2022;46(3):e16368. https://doi.org/ 10.1111/jfpp.16368
- Hidalgo C, Torija MJ, Mas A, Mateo E. Effect of inoculation on strawberry fermentation and acetification processes using native strains of yeast and acetic acid bacteria. Food Microbiology. 2013;34(1):88–94. https://doi.org/10.1016/j.fm.2012.11.019
- Sun Y, Zhang T, Lü H, Yu Z, Li X. Effect of added sulphur dioxide levels on the fermentation characteristics of strawberry wine. Journal of the Institute of Brewing. 2016;122(3):446–451. https://doi.org/10.1002/jib.342
- Hornedo O, Álvarez-Fernández RM, Cerezo A, Garcia-Garcia I, Troncoso AM, et al. Influence of fermentation process on the anthocyanin composition of wine and vinegar elaborated from strawberry. Journal of Food Science. 2017;82(2): 364–372. https://doi.org/10.1111/1750-3841.13624
- Sharma S, Joshi VK, Abrol G. An overview on Strawberry [Fragaria × ananassa (Weston) Duchesne ex Rozier] wine production technology, composition, maturation and quality evaluation. Natural Product Radiance. 2009;8(4):356–365.
- Song Y, Zhang Y, Liu N, Ye D, Gong X, et al. Volatile compounds in wild strawberry and their odorants of wild strawberry wines: Effects of different stages of fermentation. International Journal of Food Properties. 2017;20(1):399–415. https://doi.org/10.1080/10942912.2017.1297951
- Čakar U, Petrović A, Janković M, Pejin B, Vajs V, et al. Differentiation of wines made from berry and drupe fruits according to their phenolic profiles. European Journal of Horticultural Science. 2018:83(1):49–61. https://doi.org/10.17660/ eJHS.2018/83.1.7
- Pereira AP, Mendes-Ferreira A, Dias LG, Oliveira JM, Estevinho LM, et al. Volatile composition and sensory properties of mead. Microorganisms. 2019;7(10):404. https://doi.org/10.3390/microorganisms7100404
- Nehra KS, Sachdeva H, Kumar P, Jangra M, Jangra S. Production technology and analysis of quality parameters of strawberry wine. Plant Cell Biotechnology and Molecular Biology. 2021;22(21–22):40–46.
- Yang W, Liu S, Marsol-Vall A, Tähti R, Laaksonen O, et al. Chemical composition, sensory profile and antioxidant capacity of low-alcohol strawberry beverages fermented with Saccharomyces cerevisiae and Torulaspora delbrueckii. LWT. 2021;149:111910. https://doi.org/10.1016/j.lwt.2021.111910
- Gerzhikova VG. Technochemical control in winemaking. Simferopol: Tavrida; 2009. 304 p. (In Russ.) https://elibrary.ru/ XXPJXB
- Rodo- pulo AK. Basic winemaking biochemistry. Moscow: Legkaya i pishhevaya promy`shlennost`; 1983. 240 p. (In Russ.)
- Prat L, Espinoza MI, Agosin E, Silva H. Identification of volatile compounds associated with the aroma of white strawberries (Fragaria chiloensis). Journal of the Science of Food and Agriculture. 2013;94(4):752–759. https://doi.org 10.1002/jsfa.6412
- Zorrilla-Fontanesi Y, Rambla JL, Cabeza A, Medina JJ, Sánchez-Sevilla JF, et al. Genetic analysis of strawberry fruit aroma and identification of o-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Plant Physiology. 2012;159(2):851–870. https://doi.org/10.1104/pp.111.188318
- Wang C, Zhang L, Qiao Y, Liao L, Shi D, et al. Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slice. LWT. 2022;160:113232. https://doi.org/10.1016/j.lwt. 2022.113232
- Yao X-C, Zhang H-L, Ma X-R, Xia N-Y, Duan C-Q, et al. Leaching and evolution of anthocyanins and aroma compounds during Cabernet Sauvignon wine fermentation with whole-process skin-seed contact. Food Chemistry. 2024;436: 137727. https://doi.org/10.1016/j.foodchem.2023.137727
- Diez-Ozaeta I, Lavilla M, Amárita F. Wine aroma profile modification by Oenococcus oeni strains from Rioja Alavesa region: Selection of potential malolactic starters. International Journal of Food Microbiology. 2021;356:109324. https:// doi.org/10.1016/j.ijfoodmicro.2021.109324
- Zabetakis I, Gramshaw JW, Robinson DS. 2,5-Dimethyl-4-hydroxy-2H-furan-3-one and its derivatives: Analysis, synthesis and biosynthesis – A review. Food Chemistry. 1999;65(2):139–151. https://doi.org/10.1016/S0308-8146(98)00203-9
- Shelekhova NV, Shelekhova TM, Skvortsova LI, Poltavskaya NV. Gas chromatography-mass spectrometry of volatile organic impurities in whiskey. Food Processing: Techniques and Technology. 2022;52(4):787–796. (In Russ.) https://doi.org/10.21603/2074-9414-2022-4-2406
- Li N, Li G, Guan X, Li A, Tao Y. Volatile aroma compound-based decoding and prediction of sweet berry aromas in dry red wine. Food Chemistry. 2025;463(Part 2):141248. https://doi.org/10.1016/j.foodchem.2024.141248
- Wang H, Shang R, Gao S, Huang A, Huang H, et al. Characterization of key aroma compounds in a novel Chinese rice wine Xijiao Huojiu during its biological-ageing-like process by untargeted metabolomics. Heliyon. 2024;10(14):e34396. https://doi.org/10.1016/j.heliyon.2024.e34396
- Ao H, Tang C, Lu Y, Zhang Y, He L, et al. Characterization of physicochemical properties, sensory characteristics, and volatile compounds with a special focus on the terpene profile of commercial Chinese kiwifruit wines. Journal of Food Composition and Analysis. 2025;140:107187. https://doi.org/10.1016/j.jfca.2025.107187
- Welke JE, Nicolli KP, Hernandes KC, Biasoto ACT, Zini CA. Adaptation of an olfactometric system in a GC-FID in combination with GCxGC/MS to evaluate odor-active compounds of wine. Food Chemistry. 2022;370:131004. https://doi.org/ 10.1016/j.foodchem.2021.131004
- Jia X, Cui H, Qin S, Ren J, Zhang Zh, et al. Characterizing and decoding the key odor compounds of Spirulina platensis at different processing stages by sensomics. Food Chemistry. 2024;461:140944. https://doi.org/10.1016/j.foodchem.2024.140944
- Qiu Y, He X, Zheng W, Cheng Zh, Zhang J, et al. Odor-induced saltiness enhancement of volatile compounds screened from duck stewed with chili pepper. Food Chemistry. 2025;471:142717. https://doi.org/10.1016/j.foodchem.2024.142717
- Zhang R, Tang Ch, Jiang B, Mo X, Wang Zh. Characterization of volatile compounds profiles and identification of key volatile and odor-active compounds in 40 sweetpotato (Ipomoea Batatas L.) varieties. Food Chemistry: X. 2025;25:102058. https://doi.org/10.1016/j.fochx.2024.102058
- Rodrigues da Silva M, Loos HM, Buettner A. Identification of odor-active compounds in Nile tilapia (Oreochromis niloticus) from recirculated aquaculture systems: A case study with different depuration procedures. Food Research International. 2024;192:114755. https://doi.org/10.1016/j.foodres.2024.114755