ISSN 2074-9414 (Печать),
ISSN 2313-1748 (Онлайн)

Анализ профиля ароматообразующих соединений в сухой и сладкой плодовой алкогольной продукции из земляники

Аннотация
При производстве плодовой алкогольной продукции важное значение имеют вкусовые и органолептические свойства исходного фруктового или ягодного сырья. Благодаря высоким органолептическим характеристикам и полезным физиологическим свойствам земляника может быть использована для производства плодовой алкогольной продукции. Цель работы – проанализировать профиль ароматообразующих соединений в сухой и сладкой плодовой алкогольной продукции из земляники, образующихся в процессе ферментации исходного сырья. Объектами исследования послужили образцы сухой и сладкой плодовой алкогольной продукции из земляники сорта Брилла (Fragaria Brilla). В лабораторных условиях определены физико-химические показатели полученных образцов. Проведен газохроматографический анализ (газовый хроматограф «Кристалл-2000М», Россия) отогнанного спирта-сырца. Выделение ароматообразующих компонентов проводили жидкостно-жидкостной экстракцией. Анализ компонентов экстракта проводили методом газовой хромато-масс-спектрометрии (газовый хроматограф Agilent, США). Физико-химические показатели образцов сухой и сладкой плодовой алкогольной продукции из земляники соответствовали требованиям ГОСТ 59942-2021. Газохроматографический анализ показал наличие характерных спутников спиртового брожения. Провели сравнительный анализ ароматообразующих соединений сухой и сладкой плодовой алкогольной продукции и трех сортов земляники. Идентифицировано 61 соединение, формирующее аромат плодовой алкогольной продукции. Установлено, что часть соединений сохраняется в неизменном виде из земляничного сырья (спирты, сложные эфиры, фураны, углеводороды), другая часть образуется в процессе ферментации (спирты до С6, этиловые эфиры карбоновых кислот, фураны, карбоновые кислоты), а оставшиеся соединения полностью разрушаются дрожжами при брожении (альдегиды и кетоны, терпены). Полученные результаты подтвердили высокий органолептический потенциал земляники и могут быть использованы для совершенствования технологий производства плодовой алкогольной продукции. Перспективным направлением продолжения исследования будет детальное изучение трансформации ароматических соединений плодового сырья на разных стадиях ферментации.
Ключевые слова
Ягода, земляника, Fragaria Brilla, ароматообразующие вещества, ароматический профиль, брожение, плодовая алкогольная продукция, жидкостно-жидкостная экстракция
СПИСОК ЛИТЕРАТУРЫ
  1. Vergauwen D, de Smet I. The strawberry tales: Size matters. Trends in Plant Science. 2019;24(1):1–3. https://doi.org/ 10.1016/j.tplants.2018.10.007
  2. Ulrich D, Komes D, Olbricht K, Hoberg E. Diversity of aroma patterns in wild and cultivated Fragaria accessions. Genetic Resources and Crop Evolution. 2007;54:1185–1196. https://doi.org/10.1007/s10722-006-9009-4
  3. Lara I, García P, Vendrell M. Post-harvest heat treatments modify cell wall composition of strawberry (Fragaria×ana- nassa Duch.) fruit. Scientia Horticulturae. 2006;109(1):48–53. https://doi.org/10.1016/j.scienta.2006.03.001
  4. Langer SE, Oviedo NC, María M, Burgos JL, Martínez GA, et al. Effects of heat treatment on enzyme activity and expression of key genes controlling cell wall remodeling in strawberry fruit. Plant Physiology and Biochemistry. 2018;130:334–344. https://doi.org/10.1016/j.plaphy.2018.07.015
  5. Richardson DG, Kosittrakun M. Off-flavour development of apples, pears, berries, and plums under anaerobiosis and partial reversal in air. In: Russell LR, Margaret ML, editors. Fruit Flavors. WA: ACS Publications; 1995. vol. 596, pp. 211– 223. https://doi.org/10.1021/bk-1995-0596.ch019
  6. Li C, Wu H, Masisi K, Malunga LN, Song Y. Strawberries. In: Jaiswal AK, editor. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables. London: Academic Press; 2020. pp. 423–435. https://doi.org/10.1016/B978- 0-12-812780-3.00026-X
  7. Hui YH. Handbook of Fruits and Fruit Processing. Iowa: Blackwell Publishing; 2006. 697 p. https://doi.org/10.1002/ 9780470277737
  8. Lim TK. Edible medicinal and non-medicinal plants: Volume 4, Fruits. London, NY: Springer Dordrecht; 2012. 1023 p. https://doi.org/10.1007/978-94-007-4053-2
  9. Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, et al. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition. 2012;28(1):9–19. https://doi.org/10.1016/j.nut.2011.08.009
  10. Danyo EK, Ivantsova MN. Fruit phytochemicals: Antioxidant activity and health-promoting properties. Foods and Raw Materials. 2025;13(1):58–72. https://doi.org/10.21603/2308-4057-2025-1-623
  11. Vendel I, Hertog M, Nicolaï B. Fast analysis of strawberry aroma using SIFT-MS: A new technique in postharvest research. Postharvest Biology and Technology. 2019;152:127–138. https://doi.org/10.1016/j.postharvbio.2019.03.007
  12. Larsen M, Poll L. Odour thresholds of some important compounds in strawberries. Zeitschrift für Lebensmittel- Untersuchung und Forschung. 1992;195:120–123. https://doi.org/10.1007/BF01201770
  13. Larsen M, Poll L, Olsen C. Evaluation of the aroma composition of some strawberry (Fragaria ananassa Duch) cultivars by use of odour threshold values. Zeitschrift für Lebensmittel-Untersuchung und Forschung. 1992;195:536–539. https://doi.org/10.1007/BF01204558
  14. Zhao J, Liu J, Wang F, Wang S, Feng H, et al. Volatile constituents and ellagic acid formation in strawberry fruits of selected cultivars. Food Research International. 2020;138(Part A):109767. https://doi.org/10.1016/j.foodres.2020.109767
  15. Perez A, Olias R, Luances P, Sanz C. Biosynthesis of strawberry aroma compounds through amino acid metabolism. Journal of Agricultural and Food Chemistry. 2002;50(14):4037–4042. https://doi.org/10.1021/jf011465r
  16. Azodanlou R, Darbellay C, Luisier J-L, Villettaz J-C, Amado R. Quality assessment of strawberries (Fragaria species). Journal of Agricultural and Food Chemistry. 2003;51(3):715–721. https://doi.org/10.1021/jf0200467
  17. Ulrich D, Hoberg E, Rapp A, Kecke S. Analysis of strawberry flavour – Discrimination of aroma types by quantification of volatile compounds. Zeitschrift für Lebensmittel-Untersuchung und Forschung. 1997;205:218–223. https://doi.org/10.1007/ s002170050154
  18. Urruty L, Giraudel J-L, Lek S, Roudeillac P, Montury M. Assessment of strawberry aroma through SPME/GC and ANN methods. Classification and discrimination of varieties. Journal of Agricultural and Food Chemistry. 2002;50(11):3129–3136. https://doi.org/10.1021/jf0116799
  19. Hakala MA, Lapvetelainen AT, Kallio HP. Volatile compounds of selected strawberry varieties analyzed by purge- and-trap headspace GC-MS. Journal of Agricultural and Food Chemistry. 2002;50(5):1133–1142. https://doi.org/10.1021/ jf0111256
  20. Zabetakis I, Holden MA. Strawberry flavour: Analysis and biosynthesis. Journal of the Science of Food and Agriculture. 1997;74(4):421–434. https://doi.org/10.1002/(SICI)1097-0010(199708)74:4%3C421::AID-JSFA817%3E3.0.CO;2-6
  21. Fischer N, Hammerschmidt FJ. A contribution to the analysis of fresh strawberry flavour. Chemie, Mikrobiologie, Technologie der Lebensmitte. 1992;14:141–148.
  22. da Silva MDRG, das Neves HJC. Complementary use of hyphenated purge-and-trap gas chromatography techniques and sensory analysis in the aroma profiling of strawberries (Fragaria ananassa). Journal of Agricultural and Food Chemistry. 1999;47(11):4568–4573. https://doi.org/10.1021/jf9905121
  23. Ménager I, Jost M, Aubert C. Changes in physicochemical characteristics and volatile constituents of strawberry (Cv. Cigaline) during maturation. Journal of Agricultural and Food Chemistry. 2004;52(5):1248–1254. https://doi.org/10.1021/ jf0350919
  24. Jetti RR, Yang E, Kurnianta A, Finn C, Qian MC. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. Journal of Food Science. 2007;72(7):487–496. https://doi.org/10.1111/j.1750-3841.2007.00445.x
  25. Pérez AG, Rios JJ, Sanz C, Olías JM. Aroma components and free aminoacids in strawberry variety Chandler during ripening. Journal of Agricultural and Food Chemistry. 1992;40(11):2232–2235. https://doi.org/10.1021/jf00023a036
  26. Ferreira V, Bueno M, Franco-Luesma E, Culleré L, Fernández-Zurbano P. Key changes in wine aroma active compounds during bottle storage of spanish red wines under different oxygen levels. Journal of Agricultural and Food Chemistry. 2014;62(41):10015–10027. https://doi.org/10.1021/jf503089u
  27. Sadoudi M, Tourdot-Maréchal R, Rousseaux S, Steyer D, Gallardo-Chacón JJ, et al. Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiology. 2012;32(2):243–253. https://doi.org/10.1016/j.fm.2012.06.006
  28. Feng Y, Liu M, Ouyang Y, Zhao X, Ju Y, et al. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area. Food & Nutrition Research. 2015;59:29290. https://doi.org/10.3402/ fnr.v59.29290
  29. Joshi VK, Sharma S, Bhushan S. Effect of method of preparation and cultivar on the quality of strawberry wine. Acta Alimentaria. 2005;34(4):339–353. https://doi.org/10.1556/AAlim.34.2005.4.2
  30. Kafkas E, Cabaroglu T, Selli S, Bozdoğan A, Kürkçüoğlu M, et al. Identification of volatile aroma compounds of strawberry wine using solid‐phase microextraction techniques coupled with gas chromatography-mass spectrometry. Flavour and Fragrance Journal. 2006;21(1):68–71. https://doi.org/10.1002/ffj.1503
  31. Li X, Xia X, Wang Z, Wang Y, Dai Y, et al. Cloning and expression of Lactobacillus brevis β‐glucosidase and its effect on the aroma of strawberry wine. Journal of Food Processing and Preservation. 2022;46(3):e16368. https://doi.org/ 10.1111/jfpp.16368
  32. Hidalgo C, Torija MJ, Mas A, Mateo E. Effect of inoculation on strawberry fermentation and acetification processes using native strains of yeast and acetic acid bacteria. Food Microbiology. 2013;34(1):88–94. https://doi.org/10.1016/j.fm.2012.11.019
  33. Sun Y, Zhang T, Lü H, Yu Z, Li X. Effect of added sulphur dioxide levels on the fermentation characteristics of strawberry wine. Journal of the Institute of Brewing. 2016;122(3):446–451. https://doi.org/10.1002/jib.342
  34. Hornedo O, Álvarez-Fernández RM, Cerezo A, Garcia-Garcia I, Troncoso AM, et al. Influence of fermentation process on the anthocyanin composition of wine and vinegar elaborated from strawberry. Journal of Food Science. 2017;82(2): 364–372. https://doi.org/10.1111/1750-3841.13624
  35. Sharma S, Joshi VK, Abrol G. An overview on Strawberry [Fragaria × ananassa (Weston) Duchesne ex Rozier] wine production technology, composition, maturation and quality evaluation. Natural Product Radiance. 2009;8(4):356–365.
  36. Song Y, Zhang Y, Liu N, Ye D, Gong X, et al. Volatile compounds in wild strawberry and their odorants of wild strawberry wines: Effects of different stages of fermentation. International Journal of Food Properties. 2017;20(1):399–415. https://doi.org/10.1080/10942912.2017.1297951
  37. Čakar U, Petrović A, Janković M, Pejin B, Vajs V, et al. Differentiation of wines made from berry and drupe fruits according to their phenolic profiles. European Journal of Horticultural Science. 2018:83(1):49–61. https://doi.org/10.17660/ eJHS.2018/83.1.7
  38. Pereira AP, Mendes-Ferreira A, Dias LG, Oliveira JM, Estevinho LM, et al. Volatile composition and sensory properties of mead. Microorganisms. 2019;7(10):404. https://doi.org/10.3390/microorganisms7100404
  39. Nehra KS, Sachdeva H, Kumar P, Jangra M, Jangra S. Production technology and analysis of quality parameters of strawberry wine. Plant Cell Biotechnology and Molecular Biology. 2021;22(21–22):40–46.
  40. Yang W, Liu S, Marsol-Vall A, Tähti R, Laaksonen O, et al. Chemical composition, sensory profile and antioxidant capacity of low-alcohol strawberry beverages fermented with Saccharomyces cerevisiae and Torulaspora delbrueckii. LWT. 2021;149:111910. https://doi.org/10.1016/j.lwt.2021.111910
  41. Гержикова В. Г. Методы технохимического контроля в виноделии. Симферополь: Таврида; 2002. 260 с. https://elibrary.ru/ XXPJXB
  42. Родопуло А. К. Основы биохимии виноделия. М.: Легкая и пищевая промышленность; 1983. 240 с.
  43. Prat L, Espinoza MI, Agosin E, Silva H. Identification of volatile compounds associated with the aroma of white strawberries (Fragaria chiloensis). Journal of the Science of Food and Agriculture. 2013;94(4):752–759. https://doi.org 10.1002/jsfa.6412
  44. Zorrilla-Fontanesi Y, Rambla JL, Cabeza A, Medina JJ, Sánchez-Sevilla JF, et al. Genetic analysis of strawberry fruit aroma and identification of o-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Plant Physiology. 2012;159(2):851–870. https://doi.org/10.1104/pp.111.188318
  45. Wang C, Zhang L, Qiao Y, Liao L, Shi D, et al. Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slice. LWT. 2022;160:113232. https://doi.org/10.1016/j.lwt. 2022.113232
  46. Yao X-C, Zhang H-L, Ma X-R, Xia N-Y, Duan C-Q, et al. Leaching and evolution of anthocyanins and aroma compounds during Cabernet Sauvignon wine fermentation with whole-process skin-seed contact. Food Chemistry. 2024;436: 137727. https://doi.org/10.1016/j.foodchem.2023.137727
  47. Diez-Ozaeta I, Lavilla M, Amárita F. Wine aroma profile modification by Oenococcus oeni strains from Rioja Alavesa region: Selection of potential malolactic starters. International Journal of Food Microbiology. 2021;356:109324. https:// doi.org/10.1016/j.ijfoodmicro.2021.109324
  48. Zabetakis I, Gramshaw JW, Robinson DS. 2,5-Dimethyl-4-hydroxy-2H-furan-3-one and its derivatives: Analysis, synthesis and biosynthesis – A review. Food Chemistry. 1999;65(2):139–151. https://doi.org/10.1016/S0308-8146(98)00203-9
  49. Шелехова Н. В., Шелехова Т. М., Скворцова Л. И., Полтавская Н. В. Определение летучих органических примесей в виски методом газовой хромато-масс-спектрометрии. Техника и технология пищевых производств. 2022. Т. 52. № 4. С. 787–796. https://doi.org/10.21603/2074-9414-2022-4-2406
  50. Li N, Li G, Guan X, Li A, Tao Y. Volatile aroma compound-based decoding and prediction of sweet berry aromas in dry red wine. Food Chemistry. 2025;463(Part 2):141248. https://doi.org/10.1016/j.foodchem.2024.141248
  51. Wang H, Shang R, Gao S, Huang A, Huang H, et al. Characterization of key aroma compounds in a novel Chinese rice wine Xijiao Huojiu during its biological-ageing-like process by untargeted metabolomics. Heliyon. 2024;10(14):e34396. https://doi.org/10.1016/j.heliyon.2024.e34396
  52. Ao H, Tang C, Lu Y, Zhang Y, He L, et al. Characterization of physicochemical properties, sensory characteristics, and volatile compounds with a special focus on the terpene profile of commercial Chinese kiwifruit wines. Journal of Food Composition and Analysis. 2025;140:107187. https://doi.org/10.1016/j.jfca.2025.107187
  53. Welke JE, Nicolli KP, Hernandes KC, Biasoto ACT, Zini CA. Adaptation of an olfactometric system in a GC-FID in combination with GCxGC/MS to evaluate odor-active compounds of wine. Food Chemistry. 2022;370:131004. https://doi.org/ 10.1016/j.foodchem.2021.131004
  54. Jia X, Cui H, Qin S, Ren J, Zhang Zh, et al. Characterizing and decoding the key odor compounds of Spirulina platensis at different processing stages by sensomics. Food Chemistry. 2024;461:140944. https://doi.org/10.1016/j.foodchem.2024.140944
  55. Qiu Y, He X, Zheng W, Cheng Zh, Zhang J, et al. Odor-induced saltiness enhancement of volatile compounds screened from duck stewed with chili pepper. Food Chemistry. 2025;471:142717. https://doi.org/10.1016/j.foodchem.2024.142717
  56. Zhang R, Tang Ch, Jiang B, Mo X, Wang Zh. Characterization of volatile compounds profiles and identification of key volatile and odor-active compounds in 40 sweetpotato (Ipomoea Batatas L.) varieties. Food Chemistry: X. 2025;25:102058. https://doi.org/10.1016/j.fochx.2024.102058
  57. Rodrigues da Silva M, Loos HM, Buettner A. Identification of odor-active compounds in Nile tilapia (Oreochromis niloticus) from recirculated aquaculture systems: A case study with different depuration procedures. Food Research International. 2024;192:114755. https://doi.org/10.1016/j.foodres.2024.114755
Как цитировать?
О журнале