Аннотация
Имеются сведения о синергетическом характере взаимодействия полисахаридов в процессе образования устойчивых к седиментации эмульсий. Данные о влиянии комбинаций соединений полисахаридной природы на окислительную стабильность носят частный характер. Для жировых эмульсионных продуктов значимыми характеристиками являются седиментационная и окислительная устойчивость. Цель работы – изучение влияния полисахаридов и их комбинаций на окислительную и седиментационную устойчивость прямых эмульсий в процессе хранения.Объектами исследования являются прямые эмульсии, включающие подсолнечное масло, стабилизированные полисахариды и их комбинации. Получение эмульсий проводили путем постадийного внесения дисперсной фазы в дисперсионную среду с растворенным полисахаридом при интенсивном перемешивании. Эмульсии хранили при температуре 60 °C в течение 8 суток. Оценку седиментационной устойчивости проводили визуальными методами по макро- и микропараметрам. Окислительную стабильность изучали с помощью стандартных методов определения перекисного числа и конъюгированных диенов.
В рамках проведенного эксперимента установлено, что эмульсии имели средний размер частиц: от 6,78 ± 2,50 до 12,67 ± 6,53 мкм. Наибольшую седиментационную устойчивость проявили эмульсии на основе ксантановой камеди и ее комбинаций с другими полисахаридами (доля отслоившейся жидкости от 0 до 5,3 %), кроме высокоэтерифицированного пектина. Наибольшую окислительную устойчивость продемонстрировали образцы на основе камеди рожкового дерева и ее комбинации с низкоэтерифицированным пектином (перекисное число 9,85 ± 0,45 мЭкв/кг). Худший результат окислительной стабильности выявлен в образце камеди рожкового дерева с высокоэтерифицированным пектином (перекисное число 15,44 ± 0,85 мЭкв/кг). Сочетание камеди рожкового дерева и ксантановой камеди обеспечивает удовлетворительную седиментационную (доля отслоившейся жидкости 2,2 %) и окислительную (перекисное число 11,8 ± 1,1 мЭкв/кг) устойчивость эмульсии.
Результаты проведенных исследований свидетельствуют о целесообразности комбинирования различных полисахаридов для повышения седиментационной и окислительной устойчивости прямых эмульсий. Полученные результаты могут быть использованы при разработке новых видов стабильных эмульсионных жировых продуктов.
Ключевые слова
Эмульсии, камедь рожкового дерева, ксантановая камедь, пектин низкоэтерифицированный, пектин высокоэтерифицированный, хранениеФИНАНСИРОВАНИЕ
Работа выполнена в рамках государственного задания № 0529-2019-0055.СПИСОК ЛИТЕРАТУРЫ
- Kouhi M., Prabhakaran M. P., Ramakrishna S. Edible polymers: An insight into its application in food, biomedicine and cosmetics // Trends in Food Science and Technology. 2020. Vol. 103. P. 248–263. https://doi.org/10.1016/j.tifs.2020.05.025
- Jindal N., Khattar J. S. Microbial polysaccharides in food industry // Biopolymers for food design / editors A. M. Grumezescu, A. M. Holban. Academic Press, 2018. P. 95–123. https://doi.org/10.1016/B978-0-12-811449-0.00004-9
- Muthukumar J., Chidambaram R., Sukumaran S. Sulfated polysaccharides and its commercial applications in food industries – A review // Journal of Food Science and Technology. 2021. Vol. 58. № 7. P. 2453–2466. https://doi.org/10.1007/s13197-020-04837-0
- Delgado L. L., Masuelli M. A. Polysaccharides: concepts and classification // Evolution in Polymer Technology Journal. 2019. Vol. 2. № 2.
- An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures / X. Yang [et al.] // Trends in Food Science and Technology. 2020. Vol. 102. P. 1–15. https://doi.org/10.1016/j.tifs.2020.05.020
- Polysaccharides-based bio-nanostructures and their potential food applications / M. Bilal [et al.] // International Journal of Biological Macromolecules. 2021. Vol. 176. P. 540–557. https://doi.org/10.1016/j.ijbiomac.2021.02.107
- Srivastava N., Richa, Choudhury A. R. Recent advances in composite hydrogels prepared solely from polysaccharides // Colloids and Surfaces B: Biointerfaces. 2021. Vol. 205. https://doi.org/10.1016/j.colsurfb.2021.111891
- Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels – A review / X. Yang [et al.] // Trends in Food Science and Technology. 2021. Vol. 109. P. 197–210. https://doi.org/10.1016/j.tifs.2021.01.002
- Li X., de Vries R. Interfacial stabilization using complexes of plant proteins and polysaccharides // Current Opinion in Food Science. 2018. Vol. 21. P. 51–56. https://doi.org/10.1016/j.cofs.2018.05.012
- Wang Y., Ghosh S., Nickerson M. T. Effect of pH on the formation of electrostatic complexes between lentil protein isolate and a range of anionic polysaccharides, and their resulting emulsifying properties // Food Chemistry. 2019. Vol. 298. https://doi.org/10.1016/j.foodchem.2019.125023
- Formation and characterization of oil-in-water emulsions stabilized by polyphenol-polysaccharide complexes: Tannic acid and β-glucan / R. Li [et al.] // Food Research International. 2019. Vol. 123. P. 266–275. https://doi.org/10.1016/j.foodres.2019.05.005
- Petitjean M., Isasi J. R. Chitosan, xanthan and locust bean gum matrices crosslinked with β-cyclodextrin as green sorbents of aromatic compounds // International Journal of Biological Macromolecules. 2021. Vol. 180. P. 570–577. https://doi.org/10.1016/j.ijbiomac.2021.03.098
- Functional polysaccharides of carob fruit: a review / B.-J. Zhu [et al.] // Chinese Medicine. 2019. Vol. 14. № 1. https://doi.org/10.1186/s13020-019-0261-x
- Concentrated O/W emulsions formulated by binary and ternary mixtures of sodium caseinate, xanthan and guar gums: rheological properties, microstructure, and stability / K. Abdolmaleki [et al.] // Food Science and Biotechnology. 2020. Vol. 29. № 12. P. 1685–1693. https://doi.org/10.1007/s10068-020-00836-1
- Creaming and oxidative stability of fish oil-in-water emulsions stabilized by whey protein-xanthan-locust bean complexes: Impact of pH / C. Owens [et al.] // Food Chemistry. 2018. Vol. 239. P. 314–322.https://doi.org/10.1016/j.foodchem.2017.06.096
- Zdunek A., Pieczywek P. M., Cybulska J. The primary, secondary, and structures of higher levels of pectin polysaccharides // Comprehensive Reviews in Food Science and Food Safety. 2021. Vol. 20. № 1. P. 1101–1117. https://doi.org/10.1111/1541-4337.12689
- Protocols for isolating and characterizing polysaccharides from plant cell walls: a case study using rhamnogalacturonan-II / W. J. Barnes [et al.] // Biotechnology for Biofuels. 2021. Vol. 14. № 1. https://doi.org/10.1186/s13068-021-01992-0
- Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties / J. Cui [et al.] // Trends in Food Science and Technology. 2021. Vol. 110. P. 39–54. https://doi.org/10.1016/j.tifs.2021.01.077
- Muñoz-Almagro N., Montilla A., Villamiel M. Role of pectin in the current trends towards low-glycaemic food consumption // Food Research International. 2021. Vol. 140. https://doi.org/10.1016/j.foodres.2020.109851
- Optimization of xanthan and locust bean gum in a gluten-free infant biscuit based on rice-chickpea flour using response surface methodology / S. Benkadri [et al.] // Foods. 2021. Vol. 10. № 1. https://doi.org/10.3390/foods10010012
- Prajapati V. D., Maheriya P. M., Roy S. D. Locust bean gum-derived hydrogels // Plant and algal hydrogels for drug delivery and regenerative medicine / editors T. K. Giri, B. Ghosh. Woodhead Publishing, 2021. P. 217–260. https://doi.org/10.1016/B978-0-12-821649-1.00016-7
- Sworn G. Xanthan gum // Handbook of hydrocolloids. Third Edition / editors G. O. Phillips, P. A. Williams. Woodhead Publishing, 2021. P. 833–853. https://doi.org/10.1016/B978-0-12-820104-6.00004-8
- Recent advances in improving stability of food emulsion by plant polysaccharides / P. Shao [et al.] // Food Research International. 2020. Vol. 137. https://doi.org/10.1016/j.foodres.2020.109376
- Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids / C. Wang [et al.] // Comprehensive Reviews in Food Science and Food Safety. 2020. Vol. 19. № 6. P. 2955–2971. https://doi.org/10.1111/1541-4337.12621
- Oxidative stability of sunflower oil flavored by essential oil from Coriandrum sativum L. during accelerated storage / D. Wang [et al.] // LWT. 2018. Vol. 98. P. 268–275. https://doi.org/10.1016/j.lwt.2018.08.055
- Addition of anionic polysaccharides to improve the stability of rice bran protein hydrolysate-stabilized emulsions / X. Zang [et al.] // LWT. 2019. Vol. 111. P. 573–581. https://doi.org/10.1016/j.lwt.2019.04.020
- Kishk Y. F. M., Al-Sayed H. M. A. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions // LWT – Food Science and Technology. 2007. Vol. 40. № 2. P. 270–277. https://doi.org/10.1016/j.lwt.2005.11.004
- Physical and oxidative stability of fish oil-in-water emulsions stabilized with β-lactoglobulin and pectin / M. S. Katsuda [et al.] // Journal of Agricultural and Food Chemistry. 2008. Vol. 56. № 14. P. 5926–5931. https://doi.org/10.1021/jf800574s
- Effects of inulin on the gel properties and molecular structure of porcine myosin: A underlying mechanisms study / Y. Zhang [et al.] // Food Hydrocolloids. 2020. Vol. 108. https://doi.org/10.1016/j.foodhyd.2020.105974
- Preparation of surfactant-free emulsions using amaranth starch modified by reactive extrusion / E. García-Armenta [et al.] // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. Vol. 608. https://doi.org/10.1016/j.colsurfa.2020.125550
- Mcclements D. J. Critical review of techniques and methodologies for characterization of emulsion stability // Critical Reviews in Food Science and Nutrition. 2007. Vol. 47. № 7. P. 611–649. https://doi.org/10.1080/10408390701289292.
- Hara A., Radin N. S. Lipid extraction of tissues with a low-toxicity solvent // Analytical Biochemistry. 1978. Vol. 90. № 1. P. 420–426. https://doi.org/10.1016/0003-2697(78)90046-5
- Nieto-Calvache J. E., Gerschenson L. N., de Escalada Pla M. F. Papaya by-products for providing stability and antioxidant activity to oil in water emulsions // Journal of Food Science and Technology. 2021. Vol. 58. № 5. P. 1693–1702. https://doi.org/10.1007/s13197-020-04679-w
- Oxidation of fish oil oleogels formed by natural waxes in comparison with bulk oil / H.-S. Hwang [et al.] // European Journal of Lipid Science and Technology. 2018. Vol. 120. № 5. https://doi.org/10.1002/ejlt.201700378
- Delineating the inherent functional descriptors and biofunctionalities of pectic polysaccharides / M. Kumar [et al.] // Carbohydrate Polymers. 2021. Vol. 269. https://doi.org/10.1016/j.carbpol.2021.118319
- Evelson L., Lukuttsova N. Some practical aspects of fractal simulation of structure of nano-modified concrete // International Journal of Applied Engineering Research. 2015. Vol. 10. № 19. P. 40454–40456.
- Nanoscale morphological analysis of soft matter aggregates with fractal dimension ranging from 1 to 3 / F. Valle [et al.] // Micron. 2017. Vol. 100. P. 60–72. https://doi.org/10.1016/j.micron.2017.04.013
- Dàvila E., Parés D. Structure of heat-induced plasma protein gels studied by fractal and lacunarity analysis // Food Hydrocolloids. 2007. Vol. 21. № 2. P. 147–153. https://doi.org/10.1016/j.foodhyd.2006.02.004
- Goodarzi F., Zendehboudi S. A comprehensive review on emulsions and emulsion stability in chemical and energy industries // Canadian Journal of Chemical Engineering. 2019. Vol. 97. № 1. P. 281–309. https://doi.org/10.1002/cjce.23336
- Effects of droplet size on the oxidative stability of oil-in-water emulsions / K. Nakaya [et al.] // Lipids. 2005. Vol. 40. № 5. P. 501–507. https://doi.org/10.1007/s11745-005-1410-4
- Influence of whey protein-xanthan gum stabilized emulsion on stability and in vitro digestibility of encapsulated astaxanthin / N. Boonlao [et al.] // Journal of Food Engineering. 2020. Vol. 272. https://doi.org/10.1016/j.jfoodeng.2019.109859
- Продукты вторичного окисления пищевых масел и жиров. Оценка рисков для здоровья человека (сообщение 1) / М. А. Макаренко [и др.] // Вопросы питания. 2018. Т. 87. № 6. С. 125–138. https://doi.org/10.24411/0042-8833-2018-10074
- Impact of phosphatidylcholine and phosphatidylethanolamine on the oxidative stability of stripped peanut oil and bulk peanut oil / Q. Zhao [et al.] // Food Chemistry. 2020. Vol. 311. https://doi.org/10.1016/j.foodchem.2019.125962
- Free radical scavenging activity of carbonyl-amine adducts formed in soybean oil fortified with phosphatidylethanolamine / J. Goritschnig [et al.] // Molecules. 2020. Vol. 25. № 2. https://doi.org/10.3390/molecules25020373
- Hamdani A. M., Wani I. A. Guar and Locust bean gum: Composition, total phenolic content, antioxidant and antinutritional characterization // Bioactive Carbohydrates and Dietary Fibre. 2017. Vol. 11. P. 53–59. https://doi.org/10.1016/j.bcdf.2017.07.004
- Influence of anionic dietary fibers (xanthan gum and pectin) on oxidative stability and lipid digestibility of wheat protein-stabilized fish oil-in-water emulsion / C. Qiu [et al.] // Food Research International. 2015. Vol. 74. P. 131–139. https://doi.org/10.1016/j.foodres.2015.04.022
- Effect of xanthan gum or pectin addition on Sacha Inchi oil-in-water emulsions stabilized by ovalbumin or tween 80: Droplet size distribution, rheological behavior and stability / J. Vicente [et al.] // International Journal of Biological Macromolecules. 2018. Vol. 120. P. 339–345. https://doi.org/10.1016/j.ijbiomac.2018.08.041
- Friberg S. E. Emulsion stability // Food Emulsions, 3rd edn. / editors S. E. Friberg, K. Larsson. New York: Marcel Dekker, 1997. P. 1–55.
- Effects of droplet size on the interfacial concentrations of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability / M. Costa [et al.] // Journal of Colloid and Interface Science. 2020. Vol. 562. P. 352–362. https://doi.org/10.1016/j.jcis.2019.12.01