ISSN 2074-9414 (Печать),
ISSN 2313-1748 (Онлайн)

Влияние продолжительности сухого созревания и состава посолочных веществ на белки высококачественной говядины

Аннотация
Повысился интерес к процессу сухого созревания мяса в автолизе и его влиянию на основные компоненты сырья. Цель работы – изучение влияния продолжительности сухого созревания на белки высококачественной говядины и их изменение в процессе посола в зависимости от состава посолочной смеси.
В работе исследовали спинно-поясничной отруб высококачественной говядины на 21-ые и 40-ые сутки сухого созревания. Химический состав определяли арбитражными методами, растворимость и продукты окисления белков – калориметрическими методами, гидрофобность миофибриллярных белков – реакцией с бромфеноловым синим, активность каталазы и пероксидазы – стандартными методами. Созревшее сырье подвергали обвалке и посолу с использованием хлорида натрия и комбинированной смеси (70 % хлорида магния:30 % хлорида натрия). Для образцов, выдержанных в посоле, контролировали аналогичные показатели.
Установлено, что растворимость миофибриллярных белков на 21-е сутки созревания увеличивается на 23,95 % относительно исходной, но к 40 суткам уменьшается на 14,1 %. Растворимость саркоплазматических белков снижается непрерывно (22,10 и 31,12 % соответственно). Эти данные согласуются с результатами определения гидрофобности белков. Сухое созревание инициирует окисление белков. Об этом свидетельствуют результаты определения карбонильных и сульфгидрильных групп миофибриллярных белков на 40-ые сутки созревания (27,85 нмоль/л и 27,3 мкмоль/г белка соответственно). Посол сырья хлоридом натрия и комбинированной смесью позволяет повысить экстрагируемость белков на 5,2 и 6,9 % (21-е сутки созревания) и на 6,8 и 10,6 % (40-е сутки созревания), но в то же время инициирует процесс окисления белков.
Результаты исследования позволяют говорить о высокой функциональности мышечных белков высококачественной говядины после 21 суток сухого созревания, а также о целесообразности использования смеси с пониженным содержанием натрия при посоле высококачественной говядины сухого созревания.
Ключевые слова
Мясо, сухое созревание, ионная сила, окисление белков, посолочная смесь, мышечные белки, растворимость
ФИНАНСИРОВАНИЕ
Работа выполнена с использованием оборудования ЦКП КемГУ в рамках соглашения № 075-15-2021-694 от 05.08.2021, заключенного между Минобрнауки России и КемГУ (уникальный идентификатор контракта RF----2296.61321X0032).
СПИСОК ЛИТЕРАТУРЫ
  1. Lee HJ, Yoon JW, Kim M, Oh H, Yoon Y, Jo C. Changes in microbial composition on the crust by different air flow velocities and their effect on sensory properties of dry-aged beef. Meat Science. 2019;153:152–158. https://doi.org/10.1016/j.meatsci.2019.03.019
  2. Kim J-H, Kim T-K, Shin D-M, Kim H-W, Kim Y-B, Choi Y-S. Comparative effects of dry-aging and wet-aging on physicochemical properties and digestibility of Hanwoo beef. Asian-Australasian Journal of Animal Sciences. 2020;33(3):501–505. https://doi.org/10.5713/ajas.19.0031
  3. Kozyrev IV, Mittelshtein TM, Pchelkina VA, Kuznetsova TG, Lisitsyn AB. Marbled beef quality grades under various ageing conditions. Foods and Raw Materials. 2018;6(2):429–437. https://doi.org/10.21603/2308-4057-2018-2-429-437
  4. Berger J, Kim YHB, Legako JF, Martini S, Lee J, Ebner P, et al. Dry-aging improves meat quality attributes of grass-fed beef loins. Meat Science.2018;145:285–291. https://doi.org/10.1016/j.meatsci.2018.07.004
  5. Kim M, Choe J, Lee HJ, Yoon Y, Yoon S, Jo C. Effects of aging and aging method on physicochemical and sensory traits of different beef cuts. Food Science of Animal Resources. 2019;39(1):54–64. https://doi.org/10.5851/kosfa.2019.e3
  6. Hulánková R, Kameník J, Saláková A, Závodský D, Borilova G. The effect of dry aging on instrumental, chemical and microbiological parameters of organic beef loin muscle. LWT – Food Science and Technology. 2018;89:559–565. https://doi.org/10.1016/j.lwt.2017.11.014
  7. Kim YHB, Kemp R, Samuelsson LM. Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. Meat Science. 2016;111:168–176. https://doi.org/10.1016/j.meatsci.2015.09.008
  8. Кудряшов Л. С. Созревание и посол мяса. Кемерово: Кузбассвузиздат, 1992. 206 с.
  9. Domínguez R, Pateiro M, Munekata PES, Zhang W, Garcia-Oliveira P, Carpena M, et al. Protein oxidation in muscle foods: A comprehensive review. Antioxidants. 2022;11(1). https://doi.org/10.3390/antiox11010060
  10. Papuc C, Goran GV, Predescu CN, Nicorescu V. Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Comprehensive Reviews in Food Science and Food Safety. 2017;16(1):96–123. https://doi.org/10.1111/1541-4337.12241
  11. Kim YHB, Meyers B, Kim H-W, Liceaga AM, Lemenager RP. Effects of stepwise dry/wet-aging and freezing on meat quality of beef loins. Meat Science. 2017;123:57–63. https://doi.org/10.1016/j.meatsci.2016.09.002
  12. da Silva Bernardo AP, da Silva ACM, Francisco VC, Ribeiro FA, Nassu RT, Calkins CR, et al. Effects of freezing and thawing on microbiological and physical-chemical properties of dry-aged beef. Meat Science. 2020;161. https://doi.org/10.1016/j.meatsci.2019.108003
  13. Álvarez S, Álvarez C, Hamill R, Mullen AM, O'Neill E. Drying dynamics of meat highlighting areas of relevance to dry-aging of beef. Comprehensive Reviews in Food Science and Food Safety. 2021;20(6):5370–5392. https://doi.org/10.1111/1541-4337.12845
  14. Kim J-H, Lee H-J, Shin D-M, Kim T-K, Kim Y-B, Choi Y-S. The dry-aging and heating effects on protein characteristics of beef Longissiumus dorsi. Korean Journal for Food Science of Animal Resources. 2018;38(5):1101–1108. https://doi.org/10.5851/kosfa.2018.e43
  15. Zheng J, Han Y, Ge G, Zhao M, Sun W. Partial substitution of NaCl with chloride salt mixtures: Impact on oxidative characteristics of meat myofibrillar protein and their rheological properties. Food Hydrocolloids. 2019;96:36–42. https://doi.org/10.1016/j.foodhyd.2019.05.003
  16. Taylor C, Doyle M, Webb D. “The safety of sodium reduction in the food supply: A cross-discipline balancing act” – Workshop proceedings. Critical Reviews in Food Science and Nutrition. 2018;58(10):1650–1659. https://doi.org/10.1080/10408398.2016.1276431
  17. Антипова Л. В., Глотова И. А., Рогов И. А. Методы исследования мяса и мясных продуктов. М.: КолосС, 2001. 376 с.
  18. Li YJ, Li JL, Zhang L, Gao F, Zhou GH. Effects of dietary starch types on growth performance, meat quality and myofibre type of finishing pigs. Meat Science. 2017;131:60–67. https://doi.org/10.1016/j.meatsci.2017.04.237
  19. Feng Y-H, Zhang S-S, Sun B-Z, Xie P, Wen K-X, Xu C-C. Changes in physical meat traits, protein solubility, and the microstructure of different beef muscles during post-mortem aging. Foods. 2020;9(6). https://doi.org/10.3390/foods9060806
  20. Xia T, Cao Y, Chen X, Zhang Y, Xue X, Han M, et al. Effects of chicken myofibrillar protein concentration on protein oxidation and water holding capacity of its heat-induced gels. Journal of Food Measurement and Characterization. 2018;12(4):2302–2312. https://doi.org/10.1007/s11694-018-9847-8
  21. Pérez-Juan M, Flores M, Toldrá F. Effect of ionic strength of different salts on the binding of volatile compounds to porcine soluble protein extracts in model systems. Food Research International. 2007;40(6):687–693. https://doi.org/10.1016/j.foodres.2006.11.013
  22. Ma J, Wang X, Li Q, Zhang L, Wang Z, Han L, et al. Oxidation of myofibrillar protein and crosslinking behavior during processing of traditional air-dried yak (Bos grunniens) meat in relation to digestibility. LWT. 2021;142. https://doi.org/10.1016/j.lwt.2021.110984
  23. Chelh I, Gatellier, Santé-Lhoutellier V. Technical note: A simplified procedure for myofibril hydrophobicity determination. Meat Science. 2006;74(4):681–683. https://doi.org/10.1016/j.meatsci.2006.05.019
  24. Timofeyev MA, Shatilina ZM, Protopopova MV, Bedulina DS, Pavlichenko VV, Kolesnichenko AV, et al. Thermal stress defense in freshwater amphipods from contrasting habitats with emphasis on small heat shock proteins (sHSPs). Journal of Thermal Biology. 2009;34(6):281–285. https://doi.org/10.1016/j.jtherbio.2009.03.008
  25. Terevinto A, Cabrera MC, Saadoun A. Influence of feeding system on lipids and proteins oxidation, and antioxidant enzymes activities of meat from Aberdeen Angus steers. Journal of Food and Nutrition Research. 2015;3(9):581–586.
  26. Zeng Z, Li C, Ertbjerg P. Relationship between proteolysis and water-holding of myofibrils. Meat Science. 2017;131:48–55. https://doi.org/10.1016/j.meatsci.2017.04.232
  27. Santos MD, Delgadillo I, Saraiva JA. Extended preservation of raw beef and pork meat by hyperbaric storage at room temperature. International Journal of Food Science and Technology. 2020;55(3):1171–1179. https://doi.org/10.1111/ijfs.14540
  28. Chernukha IM, Kovalev LI, Mashentseva NG, Kovaleva MA, Vostrikova NL. Detection of protein aggregation markers in raw meat and finished products. Foods and Raw Materials. 2019;7(1):118–123. https://doi.org/10.21603/2308-4057-2019-1-118-123
  29. Feng Y-H, Zhang S-S, Sun B-Z, Xie P, Wen K-X, Xu C-C. Changes in physical meat traits, protein solubility, and the microstructure of different beef muscles during post-mortem aging. Foods. 2020;9(6). https://doi.org/10.3390/foods9060806
  30. Liu J, Arner A, Puolanne E, Ertbjerg P. On the water-holding of myofibrils: Effect of sarcoplasmic protein denaturation. Meat Science. 2016;119:32–40. https://doi.org/10.1016/j.meatsci.2016.04.020
  31. Zhang W, Xiao S, Ahn DU. Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition. 2013;53(11):1191–1201. https://doi.org/10.1080/10408398.2011.577540
  32. Zecca E. Investigating the role of surface hydrophobicity in protein aggregation. PhD diss. Storrs: University of Connecticut; 2017. 1488 p.
  33. Hellwig M. The chemistry of protein oxidation in food. Angewandte Chemie – International Edition. 2019;58(47):16742–16763. https://doi.org/10.1002/anie.201814144
  34. Pateiro M, Munekata PE, Cittadini A, Domínguez R, Lorenzo JM. Metallic-based salt substitutes to reduce sodium content in meat products. Current Opinion in Food Science. 2021;38:21–31. https://doi.org/10.1016/j.cofs.2020.10.029
  35. Cittadini A, Domínguez R, Gómez B, Pateiro M, Pérez-Santaescolástica C, López-Fernández O, et al. Effect of NaCl replacement by other chloride salts on physicochemical parameters, proteolysis and lipolysis of dry-cured foal “cecina”. Journal of Food Science and Technology. 2020;57:1628–1635. https://doi.org/10.1007/s13197-019-04195-6
  36. Han Z, Cai M-J, Cheng J-H, Sun D-W. Effects of microwave and water bath heating on the interactions between myofibrillar protein from beef and ketone flavour compounds. International Journal of Food Science and Technology.2019;54(5):1787–1793. https://doi.org/10.1111/ijfs.14079
  37. Hellwig M. Analysis of protein oxidation in food and feed products. Journal of Agricultural and Food Chemistry. 2020;68(46):12870–12885. https://doi.org/10.1021/acs.jafc.0c00711
  38. Zhang YM, Ertbjerg P. Effects of frozen-then-chilled storage on proteolytic enzyme activity and water-holding capacity of pork loin. Meat Science. 2018;145:375–382. https://doi.org/10.1016/j.meatsci.2018.07.017
  39. Guan F, Chen Y, Zhao S, Chen Z, Yu C, Yuan Y. Effect of slurry ice during storage on myofibrillar protein of Pseudosciaena crocea. Food Science and Nutrition. 2021;9(7):3806–3814. https://doi.org/10.1002/fsn3.2355
  40. Gurinovich GV, Patrakova IS, Seregin SA, Gargaeva AG, Alekseevnina OYa, Myshalova OM, et al. Biological value of semi-smoked sausages with cedar oil cake. Foods and Raw Materials. 2020;8(1):30–39. https://doi.org/10.21603/2308-4057-2020-1-30-39
Как цитировать?
Чаплыгина О. С., Просеков А. Ю., Веснина А. Д. Методы оценки остаточного количества антибиотиков группы амфениколы в молоке и молочной продукции // Техника и технология пищевых производств. 2022. Т. 52. № 1. С. 79–88. https://doi.org/10.21603/2074-9414-2022-1-79-88
О журнале