На сайте журнала ведутся технические работы. Старая версия сайта находится по адресу https://old-fptt.kemsu.ru
ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Влияние технологической обработки растительного сырья на уменьшение остатков пестицидов в готовой продукции

Аннотация
Пестициды в пищевых продуктах представляют собой большую опасность для здоровья человека. Их использование нельзя прекратить из-за вредителей сельскохозяйственных угодий, но можно снизить содержание при помощи технологической обработки. Цель обзора – обобщить и систематизировать полученные ранее сведения и результаты о возможном сокращении остатков контаминантов в продуктах растительного происхождения в ходе последовательных технологических стадий приготовления или производства.
Объектом исследования являлась отечественная и зарубежная научная литература по теме пестицидов в пищевых продуктах за последние тридцать лет. Информация, использованная для анализа, была получена из следующих баз: Elsevier, Taylor & Francis, Springer, PubMed, Google и Google Scholar. Основные методы анализа – обобщение и систематизация результатов и сведений.
В результате технологической обработки концентрация пестицидов понижается в отдельных случаях до 99 %. Однако из-за физико-химических свойств возможно накопление ксенобиотика и его трансформация в более опасные соединения. В таких условиях выбор операций, осуществляемых в течение производства, имеет важнейшее значение для удаления остатков пестицидов. В ходе анализа информации было установлено, что эффективный способ технологической обработки растительного сырья для сокращения остатков пестицидов – снятие плодовой оболочки и промывка в химических растворах. Для некоторых соединений уменьшение концентрации достигается на 85 %, вторая операция способна уменьшать их количество еще в 2 раза. Таким образом, остается примерно 7,5 % пестицидов от начального уровня.
В обзоре структурирована информация о способах уменьшения пестицидов в продуктах растительного происхождения. Применение различных методов технологической обработки сырья позволяет повышать его биобезопасность. Дальнейшие исследования по проблеме деградации пестицидов в пищевых продуктах необходимы, поскольку количество соединений, применяемых для обработки сельскохозяйственных угодий, продолжает увеличиваться, что представляет опасность для здоровья человека.
Ключевые слова
Пестициды , технологическая обработка , риск для здоровья , ксенобиотики , сельское хозяйство , биологическая безопасность , растительное сырье
СПИСОК ЛИТЕРАТУРЫ
  1. Tsygankov VYu. The dirty dozen of the Stockholm convention. Chemistry and toxicology of persistent organic pollutants (pops): A review. In: Tsygankov VYu, editor. Persistent organic pollutants (pops) in the far eastern region: Seas, organisms, human. Vladivostok: Far Eastern Federal University; 2020. pp. 12–61. (In Russ.). https://doi.org/10.24866/7444-4891-2/12-61
  2. Tsygankov VYu, Lukyanova ON, Boyarova MD, Gumovskiy AN, Donets MM, Lyakh VA, et al. Organochlorine pesticides in commercial Pacific salmon in the Russian Far Eastern seas: Food safety and human health risk assessment. Marine Pollution Bulletin. 2019;140:503–508. https://doi.org/10.1016/j.marpolbul.2019.02.008
  3. Khristoforova NK, Tsygankov VYu, Lukyanova ON, Boyarova MD. High mercury bioaccumulation in Pacific salmons from the Sea of Okhotsk and the Bering Sea. Environmental Chemistry Letters. 2018;16(2):575–579. https://doi.org/10.1007/s10311-018-0704-0
  4. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues Berlin, Germany, 18–27 September 2018. Rome: FAO; 2019. 668 p.
  5. Турова Н. А., Паскарелов С. И. Влияние пестицидов на организм человека // Modern science. 2020. № 12–3. С. 11–14.
  6. Alekhina NN, Ponomareva EI, Zharkova IM, Grebenshchikov AV. Assessment of functional properties and safety indicators of amaranth flour grain bread. Food Processing: Techniques and Technology. 2021;51(2):323–332. (In Russ.). https://doi.org/10.21603/2074-9414-2021-2-323-332
  7. Fazullina OF, Smirnov SO. New safety management system for pasta production. Food Processing: Techniques and Technology. 2020;50(4):736–748. (In Russ.). https://doi.org/10.21603/2074-9414-2020-4-736-748
  8. Moskvina NA, Golubtsova YuV. Dairy products with herbal supplements: Methodical aspects of quality control. Food Processing: Techniques and Technology. 2019;49(1):32–42. (In Russ.). https://doi.org/10.21603/2074-9414-2019-1-32-42
  9. Boldina AA, Sokol NV, Sanzharovskaya NS. Using rice bran for functional purpose bread production technology. Food Processing: Techniques and Technology. 2017;47(4):21–26. (In Russ.). https://doi.org/10.21603/2074-9414-2017-4-21-26
  10. World Population Prospects 2019 [Internet]. [cited 2021 Jul 15]. Available from: https://population.un.org/wpp/Download/Standard/Population
  11. Aguilera JM. The food matrix: implications in processing, nutrition and health. Critical Reviews in Food Science and Nutrition. 2019;59(22):3612–3629. https://doi.org/10.1080/10408398.2018.1502743
  12. Bian Y, Liu F, Chen F, Sun P. Storage stability of three organophosphorus pesticides on cucumber samples for analysis. Food Chemistry. 2018;250:230–235. https://doi.org/10.1016/j.foodchem.2018.01.008
  13. Harinathareddy A, Prasad NBL, Lakshmi DK, Ravindranath D, Ramesh B. Risk mitigation methods on the removal of pesticide residues in Grapes fruits for food safety. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2015;6(2):1568–1572.
  14. Andrade GCRM, Monteiro SH, Francisco JG, Figueiredo LA, Rocha AA, Tornisielo VL. Effects of types of washing and peeling in relation to pesticide residues in tomatoes. Journal of the Brazilian Chemical Society. 2015;26(10):1994–2002. https://doi.org/10.5935/0103-5053.20150179
  15. Ajeep L, Alnaser Z, Tahla MK. Effect of household processing on removal of multi-classes of pesticides from tomatoes. Journal of Microbiology, Biotechnology and Food Sciences. 2021;10(5). https://doi.org/10.15414/jmbfs.2015
  16. Watanabe M, Ueyama J, Ueno E, Ueda Y, Oda M, Umemura Y, et al. Effects of processing and cooking on the reduction of dinotefuran concentration in Japanese rice samples. Food Additives and Contaminants: Part A. 2018;35(7):1316–1323. https://doi.org/10.1080/19440049.2018.1451659
  17. Herrmann SS, Hajeb P, Andersen G, Poulsen ME. Effects of milling on extraction efficiency of incurred pesticides in cereals. Food Additives and Contaminants: Part A. 2017;34(11):1948–1958. https://doi.org/10.1080/19440049.2017.1339915
  18. Ranjitha Gracy TK, Sharanyakanth PS, Radhakrishnan M. Non-thermal technologies: Solution for hazardous pesticides reduction in fruits and vegetables. Critical Reviews in Food Science and Nutrition. 2020;62(7):1782–1799. https://doi.org/10.1080/10408398.2020.1847029
  19. Venkatachalapathy R, Anoop Chandra IR, Das S, Vajiha Aafrin B, Lalitha Priya U, Peter MJ, et al. Effective removal of organophosphorus pesticide residues in tomatoes using natural extracts. Journal of Food Process Engineering. 2019;43(2). https://doi.org/10.1111/jfpe.13351
  20. Medina MB, Munitz MS, Resnik SL. Effect of household rice cooking on pesticide residues. Food Chemistry. 2021;342. https://doi.org/10.1016/j.foodchem.2020.128311
  21. Shakoori A, Yazdanpanah H, Kobarfard F, Shojaee MH, Salamzadeh J. The effects of house cooking process on residue concentrations of 41 multi-class pesticides in rice. Iranian Journal of Pharmaceutical Research. 2018;17(2):571–584.
  22. Lee J, Shin Y, Lee J, Lee J, Kim BJ, Kim J-H. Simultaneous analysis of 310 pesticide multiresidues using UHPLC-MS/MS in brown rice, orange, and spinach. Chemosphere. 2018;207:519–526. https://doi.org/10.1016/j.chemosphere.2018.05.116
  23. Visse-Mansiaux M, Tallant M, Brostaux Y, Delaplace P, Vanderschuren H, Dupuis B. Assessment of pre- and post-harvest anti-sprouting treatments to replace CIPC for potato storage. Postharvest Biology and Technology. 2021;178. https://doi.org/10.1016/j.postharvbio.2021.111540
  24. Nguyen TT, Rosello C, Bélanger R, Ratti C. Fate of residual pesticides in Fruit and Vegetable Waste (FVW) processing. Foods. 2020;9(10). https://doi.org/10.3390/foods9101468
  25. Özbey A, Karagöz Ş, Cingöz A. Effect of drying process on pesticide residues in grapes. Gida. 2017;42(2):204–209.
  26. Keikotlhaile B. Influence of the processing factors on pesticide residues in fruits and vegetables and its application in consumer risk assessment. PhD Thesis. Belgium: University Gent; 2011. 141 p.
  27. Liu N, Pan X, Yang Q, Ji M, Zhang Z. The dissipation of thiamethoxam and its main metabolite clothianidin during strawberry growth and jam-making process. Scientific Reports. 2018;8(1). https://doi.org/10.1038/s41598-018-33334-w
  28. Li C, Li C, Yu H, Cheng Y, Xie Y, Yao W, et al. Chemical food contaminants during food processing: sources and control. Critical Reviews in Food Science and Nutrition. 2021;61(9):1545–1555. https://doi.org/10.1080/10408398.2020.1762069
  29. Yu L, Zhang H, Niu X, Wu L, Zhang Y, Wang B. Fate of chlorpyrifos, omethoate, cypermethrin, and deltamethrin during wheat milling and Chinese steamed bread processing. Food Science and Nutrition. 2021;9(6):2791–2800. https://doi.org/10.1002/fsn3.1523
  30. Shen Y, Li Z, Ma Q, Wang C, Chen X, Miao Q, et al. Determination of six pyrazole fungicides in grape wine by solid-phase extraction and gas chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry. 2016;64(19):3901–3907. https://doi.org/10.1021/acs.jafc.6b00530
  31. Philipp C, Eder P, Hartmann M, Patzl-Fischerleitner E, Eder R. Plant fibers in comparison with other fining agents for the reduction of pesticide residues and the effect on the volatile profile of Austrian white and red wines. Applied Sciences. 2021;11(12). https://doi.org/10.3390/app11125365
  32. Lacoste F, Carré P, Dauguet S, Petisca C, Campos F, Ribera D, et al. Experimental determination of pesticide processing factors during extraction of seed oils. Food Additives and Contaminants: Part A. 2020;37(9). https://doi.org/10.1080/19440049.2020.1778188
  33. Bhilwadikar T, Pounraj S, Manivannan S, Rastogi NK, Negi PS. Decontamination of microorganisms and pesticides from fresh fruits and vegetables: A comprehensive review from common household processes to modern techniques. Comprehensive Reviews in Food Science and Food Safety. 2019;18(4):1003–1038. https://doi.org/10.1111/1541-4337.12453
  34. Chauhan R, Monga S, Kumari B. Effect of processing on reduction of λ-cyhalothrin residues in tomato fruits. Bulletin of Environmental Contamination and Toxicology. 2012;88(3):352–357. https://doi.org/10.1007/s00128-011-0483-9
  35. Bahri BA, Mechichi G, Rouissi W, Ben Haj Jilani I, Ghrabi-Gammar Z. Effects of cold-storage facility characteristics on the virulence and sporulation of Penicillium expansum and the efficacy of essential oils against blue mold rot of apples. Folia Horticulturae. 2019;31(2):301–317.
  36. Li Z. Modeling distribution and dissipation kinetics of pesticides in peel and medulla tissues of postharvest tuber crops. ACS Food Science and Technology. 2021;1(10):1909–1919. https://doi.org/10.1021/acsfoodscitech.1c00246
  37. Gill K, Kumari B, Kathpal TS. Dissipation of alphametherin residues in/on brinjal and tomato during storage and processing conditions. Journal of Food Science and Technology. 2001;38(1):43–46.
  38. Dikshit A. Persistence of cypermethrin on stored pulses and its decontamination. Pesticide Research Journal. 2001;13(2):141–146.
Как цитировать?
Андреев Т. А., Цыганков В. Ю. Влияние технологической обработки растительного сырья на уменьшение остатков пестицидов в готовой продукции. Техника и технология пищевых производств, 2022, вып. 52, том. 2, стр. 244-253
DOI
http://doi.org/10.21603/2074-9414-2022-2-2360
Издатель
Кемеровский государственный университет
https://kemsu.ru
ISSN
2074-9414 (Print) /
2313-1748 (Online)
О журнале