ISSN 2074-9414 (Печать),
ISSN 2313-1748 (Онлайн)

Теоретическое исследование структурных, электронных и колебательных свойств хлорида и бромида ацетилхолина

Аннотация
Постоянно растущие возможности вычислительных систем и алгоритмов делают применение первопринципных методов одним из ключевых для исследования биологически активных соединений и анализа сложных механизмов их функционирования в живых организмах, а также целенаправленного поиска и прогнозирования новых форм. Целью исследования являлось определение структурных параметров и основных электронных и колебательных характеристик кристаллических галогенидов ацетилхолина (ACh-Hal).
Объектами исследования являлись хлорид и бромид ацетилхолина. Для их теоретического анализа применялись методы, основанные на теории функционала плотности (DFT) с использованием градиентных обменно-корреляционных функционалов (PBE) и полуэмпирической схемы учета дисперсионных взаимодействий (DFT+D3).
В результате выполненных расчетов для ACh-Hal были установлены оптимизированные параметры кристаллической решетки, равные a = 9,765 Å, b = 15,217 Å, c = 6,274 Å для орторомбического хлорида ацетилхолина (ACh-Cl) и a = 10,883 Å, b = 13,304 Å, c = 7,077 Å, 109,21° для моноклинного бромида (ACh-Br), а также координаты атомов и значения длин связей, валентных и торсионных углов. Анализ электронной структуры показывает, что ACh-Hal является диэлектриком с шириной запрещенной зоны 4,734 и 4,405 эВ, а эффективные заряды атомов углерода сильно анизотропны. Расчетные колебательные спектры хорошо согласуются с экспериментальными данными во всем интервале частот. Зависимость от массы аниона наиболее заметна в области решеточных колебаний.
Применение первопринципной схемы DFT+D3 позволяет получать для сложных органических биологически активных систем надежные данные об их основных свойствах.
Ключевые слова
Ацетилхолин, теория функционала плотности, дисперсионные поправки, кристаллическая и электронная структура, колебательные моды
СПИСОК ЛИТЕРАТУРЫ
  1. Loewi O. Quantitative and qualitative studies on the sympathetic substance. Pflügers Archiv – European Journal of Physiology. 1936;237:504–517. (In Ger.).
  2. Sörum H. The crystal and molecular structure of acetyl choline bromide. Acta Chemica Scandinavica. 1959;13:345–359. https://doi.org/10.3891/acta.chem.scand.13-0345
  3. Koolman J, Rohm K-H. Thieme G. Pocket atlas of biochemistry. New York: Georg Thieme Verlag Stuttgart, 1997. 427 p. (In Ger.).
  4. Deakyne CA, Meot-Ner M. Ionic hydrogen bonds in bioenergetics. 4. Interaction energies of acetylcholine with aromatic and polar molecules. Journal of the American Chemical Society. 1999;121(7):1546–1557. https://doi.org/10.1021/ja982549s
  5. Maltsev VA, Lakatta EG. A novel quantitative explanation for the autonomic modulation of cardiac pacemaker cell automaticity via a dynamic system of sarcolemmal and intracellular proteins. American Journal of Physiology – Heart and Circulatory Physiology. 2010;298(6):H2010–H2023. https://doi.org/10.1152/ajpheart.00783.2009
  6. Van Borren MMGJ, Verkerk AO, Wilders R, Hajji N, Zegers JG, Bourier J, et al. Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells. Basic Research in Cardiology. 2010;105(1):73–87. https://doi.org/10.1007/s00395-009-0048-9
  7. Verkerk AO, Remme CA. Zebrafish: A novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Frontiers in Physiology. 2012;3. https://doi.org/10.3389/fphys.2012.00255
  8. Tarasova OL, Ivanov VI, Luzgarev SV, Lavryashina MB, Anan’ev VA. Choline intake effects on psychophysiological indicators of students in the pre-exam period. Foods and Raw Materials. 2021;9(2):397–405. https://doi.org/10.21603/2308-4057-2021-2-397-405
  9. Xu Z, Tong C, Eisenach JC. Acetylcholine stimulates the release of nitric oxide from rat spinal cord. Anesthesiology. 1996;85(1):107–111. https://doi.org/10.1097/00000542-199607000-00015
  10. Du F, Huang W, Shi Y, Wang Z, Cheng J. Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes. Biosensors and Bioelectronics. 2008;24(3):415–421. https://doi.org/10.1016/j.bios.2008.04.020
  11. Krugovov DA, Mengele EA, Kasaikina OT. Acetylcholine as a catalyst of hydroperoxide decomposition to free radicals. Russian Chemical Bulletin. 2014;63(8):1837–1842. https://doi.org/10.1007/s11172-014-0673-9
  12. Sletten DM, Nickander KK, Low PA. Stability of acetylcholine chloride solution in autonomic testing. Journal of the Neurological Sciences. 2005;234(1–2):1–3. https://doi.org/10.1016/j.jns.2005.02.007
  13. de Almeida Neves PAA, Silva EN, Beirao PSL. Microcalorimetric study of acetylcholine and acetylthiocholine hydrolysis by acetylcholinesterase. Advances in Enzyme Research. 2017;5(1). https://doi.org/10.4236/aer.2017.51001
  14. Drudi FM, Lima C, Freitas L, Yogi M, Nascimento H, Belfort R. Acetylcholine chloride 1% usage for intraoperative cataract surgery miosis. Revista Brasileira de Oftalmologia. 2017;76(5):247–249. https://doi.org/10.5935/0034-7280.20170051
  15. Chapple-McGruder T, Leider JP, Beck AJ, Castrucci BC, Harper E, Sellers K, et al. Examining state health agency epidemiologists and their training needs. Annals of Epidemiology. 2017;27(2):83–88. https://doi.org/10.1016/j.annepidem.2016.11.007
  16. Fedotova MV, Kruchinin SE, Chuev GN. Hydration features of the neurotransmitter acetylcholine. Journal of Molecular Liquids. 2020;304. https://doi.org/10.1016/j.molliq.2020.112757
  17. Chen Q, Yang L-P, Li D-H, Zhai J, Jiang W, Xie X. Potentiometric determination of the neurotransmitter acetylcholine with ion-selective electrodes containing oxatub[4]arenes as the ionophore. Sensors and Actuators B: Chemical. 2021;326. https://doi.org/10.1016/j.snb.2020.128836
  18. Bodur OC, Hasanoğlu Özkan E, Çolak Ö, Arslan H, Sarı N, Dişli A, et al. Preparation of acetylcholine biosensor for the diagnosis of Alzheimer’s disease. Journal of Molecular Structure. 2021;1223. https://doi.org/10.1016/j.molstruc.2020.129168
  19. Svinning T, Sörum H. A reinvestigation of the crystal structure of acetylcholine bromide. Acta Crystallographica Section B – Structural Science, Crystal Engineering and Materials. 1975;B31:1581–1586. https://doi.org/10.1107/S0567740875005729
  20. Allen KW. Crystal data of acetylcholine chloride. Acta Crystallographica. 1962;15. https://doi.org/10.1107/S0365110X62002741
  21. Herdklotz JK, Sass RL. The crystal structure of acetylcholine chloride: A new conformation for acetylcholine. Biochemical and Biophysical Research Communications. 1970;40(3):583–588. https://doi.org/10.1016/0006-291x(70)90942-3
  22. Derreumaux P, Wilson KJ, Vergoten G, Peticolas WL. Conformational studies of neuroactive ligands. 1. Force field and vibrational spectra of crystalline acetylcholine. Journal of Physical Chemistry. 1989;93(4):1338–1350. https://doi.org/10.1021/j100341a033
  23. Karakaya M, Ucun F. Spectral analysis of acetylcholine halides by density functional calculations. Journal of Structural Chemistry. 2013;54(2):321–331. https://doi.org/10.1134/S0022476613020078
  24. Pawlukojc A, Hetmanczyk L. INS, DFT and temperature dependent IR studies on dynamical properties of acetylcholine chloride. Vibrational Spectroscopy. 2016;82:37–43. https://doi.org/10.1016/j.vibspec.2015.11.008
  25. Zhuravlev Yu, Gordienko K, Dyagilev D, Luzgarev S, Ivanova S, Prosekov A. Structural, electronic, and vibrational properties of choline halides. Materials Chemistry and Physics. 2020;246. https://doi.org/10.1016/j.matchemphys.2020.122787
  26. Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review. 1964;136(3B):B864–B871. https://doi.org/10.1103/PhysRev.136.B864
  27. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Physical Review. 1965;140(4A):A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133
  28. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1997;77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  29. Solomon EI, Scott RA, King R. Computational inorganic and bioinorganic chemistry. Chichester: John Wiley & Sons; 2009. 294 pp.
  30. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. Journal of Physical Chemistry. 1994;98(45):11623–11627. https://doi.org/10.1021/j100096a001
  31. Andersson Y, Andersson DC, Lundqvist BI. Van der Waals interactions in density-functional theory. Physical Review Letters. 1996;76(1):102–105. https://doi.org/10.1103/PhysRevLett.76.102
  32. Langreth DC, Dion M, Rydberg H, Schroder E, Hyldgaard P, Lundqvist BI. Van der Waals density functional theory with applications. International Journal of Quantum Chemistry. 2005;101(5):599–610. https://doi.org/10.1002/qua.20315
  33. Sato T, Tsuneda T, Hirao K. Van der Waals interactions studied by density functional theory. Molecular Physics. 2005;103(6–8):1151–1164. https://doi.org/10.1080/00268970412331333474
  34. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics. 2010;132(15). https://doi.org/10.1063/1.3382344
  35. Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry. 2011;32(7):1456–1465. https://doi.org/10.1002/jcc.21759
  36. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, et al. CRYSTAL17 User’s Manual. Torino: Universita di Torino; 2017.
  37. Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics. 1985;82(1):284–298. https://doi.org/10.1063/1.448800
  38. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for transition metal atoms Sc to Hg. The Journal of Chemical Physics. 1985;82(1):270–283. https://doi.org/10.1063/1.448799
  39. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Physical Review B. 1976;13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188
  40. Frydenvang K, Jensen B. Conformational analysis of acetylcholine and related esters. Acta Crystallographica Section B: Structural Science. 1996;52(1):184–193. https://doi.org/10.1107/S0108768195007567
  41. Al-Badr AA, El-Obeid HA. Acetylcholine chloride: Physical profile. Profiles of Drug Substances, Excipients, and Related Methodology. 2004;31:1–19. https://doi.org/10.1016/S0099-5428(04)31001-4
Как цитировать?
Гордиенко К. А., Гордиенко А. Б., Журавлев Ю. Н. Теоретическое исследование структурных, электронных и колебательных свойств хлорида и бромида ацетилхолина // Техника и технология пищевых производств. 2022. Т. 52. № 4. С. 718–728. https://doi.org/10.21603/2074-941 4-2022-4-2395
О журнале