ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Показатели качества Agaricus bisporus после обработки УФ-излучением

Аннотация
Для увеличения сроков хранения растительных объектов широко применяется обработка ультрафиолетовым (УФ) излучением. Под его воздействием замедляются изменения показателей качества сырья, определяющих его хранимоспособность. Цель исследования заключалась в установлении качественных показателей (маркеров) шампиньонов (Agaricus bisporus), значимо изменяющихся под воздействием УФ-излучения.
В качестве объектов были выбраны свежие шампиньоны, помещенные в пластиковые лотки и запаянные в полимерные пакеты. Образцы грибов обрабатывали УФ-излучением в диапазонах А, В, С и хранили 16 суток в холодильной камере при температуре 4 ± 2 °С. По истечении срока хранения определяли показатели качества шампиньонов. Полученные данные проанализировали с помощью парного двухвыборочного теста с определением равенства или неравенства дисперсий в повторностях и равенства или неравенства средних при заданной вероятности ошибки (α).
Экспериментально установили лабильные к воздействию УФ-излучением различных диапазонов маркеры, характеризующие деградацию растительной ткани шампиньонов, в процессе хранения по показателям качества (текстура, влагосодержание, убыль массы, содержание растворимых сухих веществ, рН, светлота и цветовое отличие). Разработали подход определения значимо изменяющихся показателей качества грибов. Установили значения расчетных вероятностей различий по каждому показателю. Определили диапазоны доз, влияющие на изменение качественных показателей грибов для каждого диапазона УФ-излучения при α = 0,05 и 0,1. Значимыми показателями являются: в диапазоне А от 327,8 до 800,0 Дж/м2 при α = 0,05 – все исследуемые показатели, от 219,5 до 800,0 Дж/м2 при α = 0,1 – все, кроме убыли массы; в диапазоне В от 104,6 до 200,0 Дж/м2 при α = 0,05 – рН, цветовое отличие и светлота, от 172,2 до 200,0 Дж/м2 при α = 0,1 – все, кроме убыли массы и текстуры; в диапазоне С от 412,4 до 439,5 Дж/м2 и от 755,9 до 800,0 Дж/м2 при α = 0,05 – рН, цветовое отличие и светлота, от 363,3 до 486,2 Дж/м2 и от 728,2 до 800,0 Дж/м2 при α = 0,1 – все показатели.
Разработанный метод дает возможность аналитического определения диапазонов интенсивности внешнего воздействия, при которых анализируемый показатель будет значимо или не значимо изменяться.
Ключевые слова
А, В, С-диапазоны, дозы, маркеры, двухвыборочный тест, грибы, растительное сырье, свойства, хранение
ФИНАНСИРОВАНИЕ
Работа выполнена по государственному заданию Федерального исследовательского центра пищевых систем им. В. М. Горбатова РАН, тема FNEN-2019-00011.
СПИСОК ЛИТЕРАТУРЫ
  1. Blumfield M, Abbott K, Duve E, Cassettari T, Marshall S, Fayet-Moore F. Examining the health effects and bioactive components in Agaricus bisporus mushrooms: A scoping review. Journal of Nutritional Biochemistry 2020;84. https://doi.org/10.1016/j.jnutbio.2020.108453
  2. Yan M, Yuan B, Xie Y, Cheng S, Huang H, Zhang W, et al. Improvement of postharvest quality, enzymes activity and polyphenoloxidase structure of postharvest Agaricus bisporus in response to high voltage electric field. Postharvest Biology and Technology 2020;166. https://doi.org/10.1016/j.postharvbio.2020.111230
  3. Djekic I, Vunduk J, Tomašević I, Kozarski M, Petrovic P, Niksic M, et al. Application of quality function deployment on shelf-life analysis of Agaricus bisporus Portobello. LWT. 2017;78:82–89. https://doi.org/10.1016/j.lwt.2016.12.036
  4. Fedyanina NI, Karastoyanova OV, Korovkina NV. Methods for determining color characteristics of vegetable raw materials. A review. Food Systems. 2021;4(4):230–238. (In Russ.). https://doi.org/10.21323/2618-9771-2021-4-4-230-238
  5. Nasiri M, Barzegar M, Sahari MA, Niakousari M. Efficiency of Tragacanth gum coating enriched with two different essential oils for deceleration of enzymatic browning and senescence of button mushroom (Agaricus bisporus). Food Science and Nutrition. 2019;7(4):1520–1528. https://doi.org/10.1002/fsn3.1000
  6. Huang Q, Qian X, Jiang T, Zheng X. Effect of chitosan and guar gum based composite edible coating on quality of mushroom (Lentinus edodes) during postharvest storage. Scientia Horticulturae. 2019;253:382–389. https://doi.org/10.1016/j.scienta.2019.04.062
  7. Djekic I, Vunduk J, Tomašević I, Kozarski M, Petrovic P, Niksic M, et al. Total quality index of Agaricus bisporus mushrooms packed in modified atmosphere. Journal of the Science of Food and Agriculture. 2016;97(9):3013–3021. https://doi.org/10.1002/jsfa.8142
  8. Lin X, Sun D-W. Research advances in browning of button mushroom (Agaricus bisporus): Affecting factors and controlling methods. Trends in Food Science and Technology. 2019;90:63–75. https://doi.org/10.1016/j.tifs.2019.05.007
  9. Tarafdar A, Shahi NC, Singh A. Color assessment of freeze-dried mushrooms using Photoshop and optimization with genetic algorithm. Journal of Food Process Engineering. 2018;43(1). https://doi.org/10.1111/jfpe.12920
  10. Nakilcioğlu-Taş E, Ötleş S. Kinetics of colour and texture changes of button mushrooms (Agaricus bisporus) coated with chitosan during storage at low temperature. Anais da Academia Brasileira de Ciencias. 2020;92(2):1–15. https://doi.org/10.1590/0001-3765202020181387
  11. Song Y, Hu Q, Wu Y, Pei F, Kimatu BM, Su A, et al. Storage time assessment and shelf-life prediction models for postharvest Agaricus bisporus. LWT. 2018;101:360–365. https://doi.org/10.1016/j.lwt.2018.11.020
  12. Khan ZU, Aisikaer G, Khan RU, Bu J, Jiang Z, Ni Z, et al. Effects of composite chemical pretreatment on maintaining quality in button mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biology and Technology. 2014;95:36–41. https://doi.org/10.1016/j.postharvbio.2014.04.001
  13. Salamat R, Ghassemzadeh HR, Ranjbar F, Jalali A, Mahajan P, Herppich WB, et al. The effect of additional packaging barrier, air moment and cooling rate on quality parameters of button mushroom (Agaricus bisporus). Food Packaging and Shelf Life. 2020;23. https://doi.org/10.1016/j.fpsl.2019.100448
  14. Lu Y, Zhang J, Wang X, Lin Q, Liu W, Xie X, et al. Effects of UV-C irradiation on the physiological and antioxidant responses of button mushrooms (Agaricus bisporus) during storage. International Journal of Food Science Technology. 2016;51(6):1502–1508. https://doi.org/10.1111/ijfs.13100
  15. Zhang K, Pu Y-Y, Sun D-W. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends in Food Science Technology. 2018;78:72–82. https://doi.org/10.1016/j.tifs.2018.05.012
  16. Yan J, Ban Z, Luo Z, Yu L, Wu Q, Li D, et al. Variation in cell membrane integrity and enzyme activity of the button mushroom (Agaricus bisporus) during storage and transportation. Journal of Food Science and Technology. 2020;58(5):1655–1662. https://doi.org/10.1007/s13197-020-04674-1
  17. Diamantopoulou PA, Philippoussis AN. Cultivated mushrooms: Preservation and processing. In: Hui YH, Özgül Evranuz E, editors. Handbook of vegetable preservation and processing. CRC Press; 2015. pp. 495–525. https://doi.org/10.1201/b19252-26
  18. Jiang T. Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modified atmosphere. Postharvest Biology and Technology. 2013;76:91–97. https://doi.org/10.1016/j.postharvbio.2012.09.005
  19. Xu Y, Tian Y, Ma R, Liu Q, Zhang J. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chemistry. 2016;197:436–444. https://doi.org/10.1016/j.foodchem.2015.10.144
  20. Saniewski M, Falandysz J, Zalewska T. 137Cs and 40K activity concentrations in edible wild mushrooms from China regions during the 2014–2016 period. Foods and Raw Materials. 2022;10(1):86–96. https://doi.org/10.21603/2308-4057-2022-1-86-96
  21. Ding Y, Zhu Z, Zhao J, Nie Y, Zhang Y, Sheng J, et al. Effects of postharvest brassinolide treatment on the metabolism of white button mushroom (Agaricus bisporus) in relation to development of browning during storage. Food and Bioprocess Technology. 2016;9(8):1327–1334. https://doi.org/10.1007/s11947-016-1722-1
  22. Gao M, Feng L, Jiang T. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment. Food Chemistry. 2014;149:107–113. https://doi.org/10.1016/j.foodchem.2013.10.073
  23. Taghizadeh M, Gowen A, Ward P, O’Donnell CP. Use of hyperspectral imaging for evaluation of the shelf-life of fresh white button mushrooms (Agaricus bisporus) stored in different packaging films. Innovative Food Science and Emerging Technologies. 2010;11(3):423–431. https://doi.org/10.1016/j.ifset.2010.01.016
  24. Fernandes A, Barreira JCM, Günaydi T, Alkan H, Antonio AL, Oliveira MBPP, et al. Effect of gamma irradiation and extended storage on selected chemical constituents and antioxidant activities of sliced mushroom. Food Control. 2017;72:328–337. https://doi.org/10.1016/j.foodcont.2016.04.044
  25. Joshi B, Moreira RG, Omac B, Castell-Perez ME. A process to decontaminate sliced fresh cucumber (Cucumis sativus) using electron beam irradiation. LWT. 2018;91:95–101. https://doi.org/10.1016/j.lwt.2018.01.034
  26. Alonso M, Palou L, Ángel del Río M, Jacas J-A. Effect of X-ray irradiation on fruit quality of clementine mandarin cv. “Clemenules”. Radiation Physics and Chemistry. 2007;76(10):1631–1635. https://doi.org/10.1016/j.radphyschem.2006.11.015
  27. Dellarosa N, Frontuto D, Laghi L, Dalla Rosa M, Lyng JG. The impact of pulsed electric fields and ultrasound on water distribution and loss in mushrooms stalks. Food Chemistry. 2017;236:94–100. https://doi.org/10.1016/j.foodchem.2017.01.105
  28. Bredihin SA, Andreev VN, Martekha AN, Schenzle MG, Korotkiy IA. Erosion potential of ultrasonic food processing. Foods and Raw Materials. 2021;9(2):335–344. https://doi.org/10.21603/2308-4057-2021-2-335-344
  29. Lagnika C, Zhang M, Nsor-Atindana J, Bashari M. Effects of ultrasound and chemical treatments on white mushroom (Agaricus bisporus) prior to modified atmosphere packaging in extending shelf-life. Journal of Food Science and Technology. 2012;51(12):3749–3757. https://doi.org/10.1007/s13197-012-0904-8
  30. Xiao K, Liu Q, Wang L, Zhang B, Zhang W, Yang W, et al. Prediction of soluble solid content of Agaricus bisporus during ultrasound-assisted osmotic dehydration based on hyperspectral imaging. LWT. 2020;122. https://doi.org/10.1016/j.lwt.2020.109030
  31. Riazantseva KA, Sherstneva NE. Traditional and Innovative uses of ultraviolet treatment in the dairy industry. Food Processing: Techniques and Technology. 2022;52(2):390–406. (In Russ.). https://doi.org/10.21603/2074-9414-2022-2-2372
  32. Lei J, Li B, Zhang N, Yan R, Guan W, Brennan CS, et al. Effects of UV-C treatment on browning and the expression of polyphenol oxidase (PPO) genes in different tissues of Agaricus bisporus during cold storage. Postharvest Biology and Technology. 2018;139:99–105. https://doi.org/10.1016/j.postharvbio.2017.11.022
  33. Kalaras MD, Beelman RB, Elias RJ. Effects of postharvest pulsed UV light treatment of white button mushrooms (Agaricus bisporus) on vitamin D2 content and quality attributes. Journal of Agricultural and Food Chemistry. 2011;60(1):220–225. https://doi.org/10.1021/jf203825e
  34. Shishkina NS, Karastoyanova OV, Korovkina NV, Fedyanina NI. Complex technology for storing plant products using UV radiation. Vsyo o Myase. 2020;(5S):407–411. (In Russ.). https://doi.org/10.21323/2071-2499-2020-5S-407-411
  35. Wu X, Guan W, Yan R, Lei J, Xu L, Wang Z. Effects of UV-C on antioxidant activity, total phenolics and main phenolic compounds of the melanin biosynthesis pathway in different tissues of button mushroom. Postharvest Biology and Technology. 2016;118:51–58. https://doi.org/10.1016/j.postharvbio.2016.03.017
  36. Ko JA, Lee BH, Lee JS, Park HJ. Effect of UV-B exposure on the concentration of vitamin D2 in sliced shiitake mushroom (Lentinus edodes) and white button mushroom (Agaricus bisporus). Journal of Agricultural and Food Chemistry. 2008;56(10):3671–3674. https://doi.org/10.1021/jf073398s
  37. Kondratenko VV, Fedyanina NI, Karastoyanova OV. Change of the fresh mushroom texture in the process of refrigerated storage after processing with UV radiation. Izvestiya Vuzov. Food Technology. 2020;377–378(5–6):89–93. (In Russ.). https://doi.org/10.26297/0579-3009.2020.5-6.21
  38. Fedyanina NI, Karastoyanova OV, Korovkina NV. Study of the dynamics of the qualitative indicator of champignons during storage after treatment with UV radiation in the a range. Food Industry. 2021;(9):56–57. (In Russ.). https://doi.org/10.52653/PPI.2021.9.9.024
  39. Guan W, Fan X, Yan R. Effects of UV-C treatment on inactivation of Escherichia coli O157:H7, microbial loads, and quality of button mushrooms. Postharvest Biology and Technology. 2012;64(1):119–125. https://doi.org/10.1016/j.postharvbio.2011.05.017
  40. Liu C, Cheng Y, Guo D, Zhang T, Li Y, Hou W, et al. A new concept on quality marker for quality assessment and process control of Chinese medicines. Chinese Herbal Medicines. 2017;9(1):3–13. https://doi.org/10.1016/s1674-6384(17)60070-4
  41. Rivera-Mondragón A, Ortíz OO, Bijttebier S, Vlietinck A, Apers S, Pieters L, et al. Selection of chemical markers for the quality control of medicinal plants of the genus Cecropia. Pharmaceutical Biology. 2017;55(1):1500–1512. https://doi.org/10.1080/13880209.2017.1307421
  42. Zhang X, Zhang S, Gao B, Qian Z, Liu J, Wu S, et al. Identification and quantitative analysis of phenolic glycosides with antioxidant activity in methanolic extract of Dendrobium catenatum flowers and selection of quality control herb-markers. Food Research International. 2019;123:732–745. https://doi.org/10.1016/j.foodres.2019.05.040
  43. Ma L, Chen H, Liu F, Qi J, Pei J, Qian H. Application of Plackett-Burman design in screening casein and prebiotics for the production of ace inhibitory peptides from cow milk fermented by L. bulgaricus LB6. Food Technology. 2019;XXIII(2):93–100.
  44. Valmorida JS, Castillo-Israel KAT. Application of Plackett-Burman experimental design in the development of muffin using adlay flour. IOP Conference Series: Earth and Environmental Science. 2018;102(1). https://doi.org/10.1088/1755-1315/102/1/012081
  45. Bartolucci AA, Singh KP, Bae S. Robustness and ruggedness. In: Bartolucci AA, Singh KP, Bae S, editors. Introduction to statistical analysis of laboratory data. John Wiley & Sons; 2015. pp. 213–234. https://doi.org/10.1002/9781118736890.ch8
  46. Fetisov EA, Semipyatnyy VK, Petrov AN, Galstyan AG. Planning and analysis of the results of technological experiments. Moscow: Stalingrad; 2015. 98 p. (In Russ.).
Как цитировать?
Показатели качества Agaricus bisporus после обработки УФ-излучением / В. В. Кондратенко [и др.] // Техника и технология пищевых производств. 2022. Т. 52. № 4. С. 762–774. https://doi.org/10.21603/2074-9414-2022-4-2404
О журнале