Аннотация
Антибиотики традиционно используют для профилактики и лечения сельскохозяйственных животных. Содержание остаточного количества антибиотиков в животноводческой продукции (молоке, мясе и продуктах на их основе) является серьезной проблемой здравоохранения. Цель работы – оценка влияния контаминации молочного сырья антибиотиками на показатели качества и безопасности продуктов питания, а также оценка воздействия антибиотиков на микробиологический состав молока и возможности появления устойчивых к антибиотикам бактерий.Объектами исследования являлись научные статьи российских и зарубежных ученых, опубликованные с 2017 по 2022 гг., посвященные изучению влияния антибиотиков на молоко и продукты его переработки. Поиск провели по базам данных PubMed, Scopus, ScienceDirect и Web of Science, а также в электронной научной библиотеке eLibrary.ru по ключевым словам: антибиотики, антибиотикорезистентность, молоко и безопасность пищевой продукции.
Анализ источников показал, что содержание антибиотиков в молоке приводит к ингибированию жизнедеятельности молочнокислых бактерий, что является причиной нарушения технологического процесса производства различных продуктов (йогуртов, сыров и т. д.). При соблюдении режимов обработки (нормализации, пастеризации и гомогенизации) исходного сырья антибиотики сохраняются в кисломолочных продуктах, связываясь со структурными компонентами молока (белками и жирами). Антибиотики из молочного сырья обнаруживаются в исходном количестве в йогуртах. При производстве сыров антибиотики переходят в сыворотку, но аминогликозиды, хинолоны и тетрациклины содержатся в готовом продукте, связываясь с белковой фракцией.
Контаминация молочного сырья антибиотиками оказывает негативное влияние на биологическую безопасность продукции и приводит к серьезным проблемам как для здоровья человека, так и для технологического процесса производства. Однако данной проблеме уделяется недостаточно внимания. Необходимо проводить исследования по оценке остаточного содержания антибиотиков в молоке и молочных продуктах для обеспечения токсикологической безопасности продукции и технологических этапов производства, а также расширять аналитические методы оценки содержания антибиотиков в продукции.
Ключевые слова
Антибиотики, продукты животного происхождения, молоко, антибиотикорезистентность, биобезопасность, бактерииВклад авторов
Авторы в равной степени участвовали в написании рукописи и несут равную ответственность за плагиат.КОНФЛИКТ ИНТЕРЕСОВ
Авторы заявляют об отсутствии конфликта интересов в данной публикации.СПИСОК ЛИТЕРАТУРЫ
- Treiber FM, Beranek-Knauer H. Antimicrobial residues in food from animal origin – A review of the literature focusing on products collected in stores and markets worldwide. Antibiotics. 2021;10(5). https://doi.org/10.3390/antibiotics10050534
- Харитонов Д. В., Харитонова И. В., Просеков А. Ю. Разработка концепции создания синбиотиков и синбиотических молочных продуктов // Техника и технология пищевых производств. 2013. Т. 31. № 4. С. 91–94.
- Barrett JR, Innes GK, Johnson KA, Lhermie G, Ivanek R, Greiner Safi A, et al. Consumer perceptions of antimicrobial use in animal husbandry: A scoping review. PLoS One. 2021;16(12). https://doi.org/10.1371/journal.pone.0261010
- Chaplygina OS, Prosekov AYu, Vesnina AD. Determining the residual amount of amphenicol antibiotics in milk and dairy products. Food Processing: Techniques and Technology. 2022;52(1):79–88. (In Russ.). https://doi.org/10.21603/2074-9414-2022-1-79-88
- Просеков А. Ю., Остроумов Л. А. Инновационный менеджмент биотехнологий заквасочных культур // Техника и технология пищевых производств. 2016. Т. 43. № 4. С. 64–69.
- Faustini M, Quintavalle Pastorino G, Colombani C, Chiesa LM, Panseri S, Vigo D, et al. Volatilome in milk for Grana Padano and Parmigiano Reggiano cheeses: A first survey. Veterinary Sciences. 2019;6(2). https://doi.org/10.3390/vetsci6020041
- László N, Lányi K, Laczay P. LC-MS study of the heat degradation of veterinary antibiotics in raw milk after boiling. Food Chemistry. 2018;267:178–186. https://doi.org/10.1016/j.foodchem.2017.11.041
- El-Sayed A, Kamel M. Bovine mastitis prevention and control in the post-antibiotic era. Tropical Animal Health and Production. 2021;53(2). https://doi.org/10.1007/s11250-021-02680-9
- Landers TF, Cohen B, Wittum TE, Larson EL. А review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Reports. 2020;127(1):4–22. https://doi.org/10.1177/003335491212700103
- de Albuquerque Fernandes SA, Magnavita APA, Ferrao SPB, Gualberto SA, Faleiro AS, Figueiredo AJ, et al. Daily ingestion of tetracycline residue present in pasteurized milk: A public health. Environmental Science and Pollution Research. 2019;21(5):3427–3434. https://doi.org/10.1007/s11356-013-2286-5
- Výrostková J, Regecová I, Dudriková E, Marcinčák S, Vargová M, Kováčová M, et al. Antimicrobial resistance of Enterococcus sp. isolated from sheep and goat cheeses. Foods. 2021;10(8). https://doi.org/10.3390/foods10081844
- Quintanilla MP, Beltrán C, Peris B, Rodríguez MM, Molina P. Antibiotic residues in milk and cheeses after the off-label use of macrolides in dairy goats. Small Ruminant Research. 2018;167:55–60. https://doi.org/10.1016/j.smallrumres.2018.08.008
- Gaudin V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – A comprehensive review. Biosensors and Bioelectronics. 2017;90:363–377. https://doi.org/10.1016/j.bios.2016.12.005
- Jank L, Martins MT, Arsand JB, Campos Motta TM, Hoff RB, Barreto F, et al. High-throughput method for macrolides and lincosamides antibiotics residues analysis in milk and muscle using a simple liquid-liquid extraction technique and liquid chromatography-electrospray-tandem mass spectrometry analysis (LC-MS/MS). Talanta. 2017;144:686–695. https://doi.org/10.1016/j.talanta.2015.06.078
- Samreen, Ahmad I, Malak HA, Abulreesh HH. Environmental antimicrobial resistance and its drivers: A potential threat to public health. Journal of Global Antimicrobial Resistance. 2021;27:101–111. https://doi.org/10.1016/j.jgar.2021.08.001
- Navrátilova P, Borkovcova I, Stastkova Z, Bednarova I, Vorlova L. Effect of cephalosporin antibiotics on the activity of yoghurt cultures. Foods. 2022;11(18). https://doi.org/10.3390/foods11182751
- Ianni F, Pucciarini L, Carotti A, Saluti G, Moretti S, Ferrone V, et al. Hydrophilic interaction liquid chromatography of aminoglycoside antibiotics with a diol-type stationary phase. Analytica Chimica Acta. 2018;1044:174–180. https://doi.org/10.1016/j.aca.2018.08.008
- Castrica M, Rebucci R, Giromini C, Tretola M, Cattaneo D, Baldi A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Italian Journal of Animal Science. 2018;18(1):336–341. https://doi.org/10.1080/1828051X.2018.1529544
- Pazzola M, Stocco G, Dettori ML, Bittante G, Vacca GM. Effect of goat milk composition on cheesemaking traits and daily cheese production. Journal of Dairy Science. 2019;102(5):3947–3955. https://doi.org/10.3168/jds.2018-15397
- Pogurschi E, Ciric A, Zugrav C, Patrascu D, Pogurschi E. Identification of antibiotic residues in raw milk samples coming from the metropolitan area of Bucharest. Agriculture and Agricultural Science Procedia. 2019;6:242–245. https://doi.org/10.1016/j.aaspro.2015.08.066
- Zhang J, Wang J, Jin J, Li X, Zhang H, Shi X, et al. Prevalence, antibiotic resistance, and enterotoxin genes of Staphylococcus aureus isolated from milk and dairy products worldwide: A systematic review and meta-analysis. Food Research International. 2022;162. https://doi.org/10.1016/j.foodres.2022.111969
- Wu Q, Zhu Q, Liu Y, Shabbir MAB, Sattar A, Peng D, et al. A microbiological inhibition method for the rapid, broad-spectrum, and high-throughput screening of 34 antibiotic residues in milk. Journal of Dairy Science. 2019;102(12):10825–10837. https://doi.org/10.3168/jds.2019-16480
- de Paula ACL, Medeiros JD, de Azevedo AC, de Assis Chagas JM, da Silva VL, Diniz CG. Antibiotic resistance genetic markers and integrons in white soft cheese: Aspects of clinical resistome and potentiality of horizontal gene transfer. Genes. 2018;9(2). https://doi.org/10.3390/genes9020106
- Beltrán MC, Morari-Pirlog A, Quintanilla P, Escriche I, Molina MP. Influence of enrofloxacin on the coagulation time and the quality parameters of goat’s milk yoghurt. International Journal of Dairy Technology. 2018;71(1):105–111. https://doi.org/10.1111/1471-0307.12388
- Bagré TS, Samandoulougou S, Traore M, Illy D, Bsadjo-Tchamba G, Bawa-Ibrahim H, et al. Detection of antibiotics residues in dairy products sold in Ouagadougou, Burkina Faso. Journal of Applied Biosciences. 2019;87:8105–8112. https://doi.org/10.4314/jab.v87i1.11
- Piñeiro SA, Cerniglia CE. Antimicrobial drug residues in animal-derived foods: Potential impact on the human intestinal microbiome. Journal of Veterinary Pharmacology and Therapeutics. 2020;44(2):215–222. https://doi.org/10.1111/jvp.12892
- Eluk D, Ceruti R, Nagel O, Althaus R. Effect of thermal treatment of whey contaminated with antibiotics on the growth of Kluyveromyces marxianus. Journal of Dairy Research. 2019;86(1):102–107. https://doi.org/10.1017/S0022029919000098
- Влияние антибиотиков на качество и безопасность молока и молочных продуктов / Г. В. Родионов [и др.] // Известия Тимирязевской сельскохозяйственной академии. 2019. № 4. С. 88–103.
- Giraldo J, Althaus RL, Beltrán MC, Molina MP. Antimicrobial activity in cheese whey as an indicator of antibiotic drug transfer from goat mil. International Dairy Journal. 2017;69:40–44. https://doi.org/10.1016/j.idairyj.2017.02.003
- Ghimpețeanu OM, Pogurschi EN, Popa DC, Dragomir N, Drăgotoiu T, Mihai OD, et al. Antibiotic use in livestock and residues in food – A public health threat: A review. Foods. 2022;11(10). https://doi.org/10.3390/foods11101430
- Hassan HF, Haddad R, Saidy L, Hosri C, Asmar S, Serhan M. Tracking of enrofloxacin antibiotic in the making of common middle eastern cheeses. Applied Food Research. 2021;1(1). https://doi.org/10.1016/j.afres.2021.100004
- Sachi S, Ferdous J, Sikder MH, Azizul Karim Hussani SM. Antibiotic residues in milk: Past, present, and future. Journal of Advanced Veterinary and Animal Research. 2019;6(3):315–332. https://doi.org/10.5455/javar.2019.f350
- Quintanilla P, Beltrán MC, Molina A, Escriche I, Molina MP. Characteristics of ripened Tronchón cheese from raw goat milk containing legally admissible amounts of antibiotics. Journal of Dairy Science. 2019;102(4):2941–2953. https://doi.org/10.3168/jds.2018-15532
- Gajda A, Nowacka-Kozak E, Gbylik-Sikorska M, Posyniak A. Tetracycline antibiotics transfer from contaminated milk to dairy products and the effect of the skimming step and pasteurisation process on residue concentrations. Food Additives and Contaminants. 2018;35(1):66–76. https://doi.org/10.1080/19440049.2017.1397773
- Hakk H, Shappell NW, Lupton SJ, Shelver WL, Fanaselle W, Oryang D, et al. Distribution of animal drugs between skim milk and milk fat fractions in spiked whole milk: Understanding the potential impact on commercial milk products. Journal of Agricultural and Food Chemistry. 2016;64(1):326–335. https://doi.org/10.1021/acs.jafc.5b04726
- Bacanlı M, Başaran N. Importance of antibiotic residues in animal food. Food and Chemical Toxicology. 2019;125:462–466. https://doi.org/10.1016/j.fct.2019.01.033
- Zhao M, Li X, Zhang Y, Wang Y, Wang B, Zheng L, et al. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chemistry. 2021;339. https://doi.org/10.1016/j.foodchem.2020.127857
- Lupton SJ, Shappell NW, Shelver WL, Hakk H. Distribution of spiked drugs between milk fat, skim milk, whey, curd, and milk protein fractions: Expansion of partitioning models. Journal of Agricultural and Food Chemistry. 2018;66(1):306–314. https://doi.org/10.1021/acs.jafc.7b04463
- Gbylik-Sikorska М, Gajda А, Nowacka-Kozak Е, Posyniak А. The “force” of cloxacillin residue will be with you in various dairy products – The last experimental evidence. Food Control. 2021;121. https://doi.org/10.1016/j.foodcont.2020.107628
- Lányi K, Darnay L, László N, Lehel J, Friedrich L, Győri R, et al. Transfer of certain beta-lactam antibiotics from cow’s milk to fresh cheese and whey. Food Additives and Contaminants. 2022;39(1):52–60. https://doi.org/10.1080/19440049.2021.1973114
- Cabizza R, Rubattu N, Salis S, Pes M, Comunian R, Paba A, et al. Transfer of oxytetracycline from ovine spiked milk to whey and cheese. International Dairy Journal. 2017;70:12–17. https://doi.org/10.1016/j.idairyj.2016.12.002
- Cabizza R, Rubattu N, Salis S, Pes M, Comunian R, Paba A, et al. Impact of a thermisation treatment on oxytetracycline spiked ovine milk: Fate of the molecule and technological implications. LWT. 2018;96:236–243. https://doi.org/10.1016/j.lwt.2018.05.026
- Rossi R, Saluti G, Moretti S, Diamanti I, Giusepponi D, Galarini R. Multiclass methods for the analysis of antibiotic residues in milk by liquid chromatography coupled to mass spectrometry: A review. Food Additives and Contaminants. 2018;35(2):241–257. https://doi.org/10.1080/19440049.2017.1393107
- Virto M, Santamarina-García G, Amores G, Hernández I. Antibiotics in dairy production: Where is the problem? Dairy. 2022;3(3):541–564. https://doi.org/10.3390/dairy3030039
- Quintanilla P, Beltrán MC, Molina MP, Escriche I. Enrofloxacin treatment on dairy goats: Presence of antibiotic in milk and impact of residue on technological process and characteristics of mature cheese. Food Control. 2021;123. https://doi.org/10.1016/j.foodcont.2020.107762
- Quintanilla P, Doménech E, Escriche I, Beltrán MC, Molina MP. Food safety margin assessment of antibiotics: Pasteurized goat's milk and fresh cheese. Journal of Food Protection. 2019;82(9):1553–1559. https://doi.org/10.4315/0362-028X.JFP-18-434
- Tilocca B, Costanzo N, Morittu VM, Spina AA, Soggiu A, Britti D, et al. Milk microbiota: Characterization methods and role in cheese production. Journal of Proteomics. 2020;210. https://doi.org/10.1016/j.jprot.2019.103534
- Fedorova MA. Current trends in milk and dairy products production and consumption in Russia and foreign countries under lockdown conditions. Socio-Economic and Humanitarian Journal. 2022;24(2):3–19. (In Russ.). https://doi.org/10.36718/2500-1825-2022-2-3-19
- Rezaee M, Khalilian F. Application of ultrasound-assisted extraction followed by solid-phase extraction followed by dispersive liquid-liquid microextraction for the determination of chloramphenicol in chicken meat. Food Analytical Methods. 2018;11:759–767. https://doi.org/10.1007/s12161-017-1048-2
- Britzi M, Schwartsburd F. Development and validation of a high-throughput method for the determination of eight non-steroidal anti-inflammatory drugs and chloramphenicol in milk, using liquid chromatography-tandem mass spectroscopy. Analytical and Bioanalytical Methods. 2019;1(1). https://doi.org/10.35840/2633-8912/2405
- Berruga I, Molina MP, Novés' B, Román M, Molina A. In vitro study about the effect of several penicillins during the fermentation of yogurt made from ewe’s milk. Milchwissenschaft. 2007;62(3):303–305.
- Pastor-Belda M, Campillo N, Arroyo-Manzanares N, Hernández-Córdoba M, Viñas P. Determination of amphenicol antibiotics and their glucuronide metabolites in urine samples using liquid chromatography with quadrupole time-of-flight mass spectrometry. Journal of Chromatography B. 2020;1146. https://doi.org/10.1016/j.jchromb.2020.122122
- Lekshmi M, Ammini P, Kumar S, Varela MF. The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms. 2017;5(1). https://doi.org/10.3390/microorganisms5010011
- Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria – a review. International Journal of Food Microbiology. 2018;105(3):281–295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008
- Septimus EJ. Antimicrobial resistance: An antimicrobial/diagnostic stewardship and infection prevention approach. Medical Clinics of North America. 2018;102(5):819–829. https://doi.org/10.1016/j.mcna.2018.04.005
- Alhaji NB, Aliyu MB, Ghali-Mohammed I, Odetokun IA. Survey on antimicrobial usage in local dairy cows in North-central Nigeria: Drivers for misuse and public health threats. PLoS One. 2019;14(12). https://doi.org/10.1371/journal.pone.0224949
- What is Antibiotic Resistance? [Internet]. [cited 2022 Dec 25]. Available from: https://amr.biomerieux.com/en/about-amr/what-is-antibiotic-resistance
- По следам антибиотиков: что могло пойти не так и как это исправить? URL: https://biomolecularu/articles/po-sledam-antibiotikov-chto-moglo-poiti-ne-tak-i-kak-eto-ispravit (дата обращения 25.12.2022).
- Yao J, Gao J, Guo J, Wang H, Zhang E, Lin Y, et al. Characterization of bacteria and antibiotic resistance in commercially produced cheeses sold in China. Journal of Food Protection. 2022;85(3):484–493. https://doi.org/10.4315/JFP-21-198
- Hammad AM, Hassan HA, Shimamoto T. Prevalence, antibiotic resistance and virulence of Enterococcus spp. in Egyptian fresh raw milk cheese. Food Control. 2022;50:815–820. https://doi.org/10.1016/j.foodcont.2014.10.020
- Brown K, Mugoh M, Call DR, Omulo S. Antibiotic residues and antibiotic-resistant bacteria detected in milk marketed for human consumption in Kibera, Nairobi. PLoS One. 2020;15(5). https://doi.org/10.1371/journal.pone.0233413
- Zanella GN, Mikcha JMG, Bando E, Siqueira VLD, Machinski Jr M. Occurrence and antibiotic resistance of coliform bacteria and antimicrobial residues in pasteurized cow's milk from Brazil. Journal of Food Protection. 2020;73(9):1684–1687. https://doi.org/10.4315/0362-028x-73.9.1684
- El Zubeir EM, El Owni OAO. Antimicrobial resistance of bacteria associated with raw milk contaminated by chemical preservatives. World Journal of Dairy and Food Sciences. 2009;4(1):65–69.