Аннотация
Получение фосфолипидного изолята с высоким содержанием фосфолипидов путем обезжиривания жидкого лецитина является ресурсо- и энергозатратным процессом. Исследование эффективности применения различных методов интенсификации этого процесса актуально. Метод ультразвукового воздействия – один из наиболее эффективных и простых в реализации физических методов интенсификации химико-технологических процессов. Цель работы – исследование влияния ультразвукового воздействия на эффективность процесса обезжиривания жидких лецитинов.Объектами являлись образцы соевого лецитина (жидкий, частично обезжиренный, фосфолипидный изолят). Обезжиривание жидкого соевого лецитина с применением в качестве растворителя ацетона осуществляли в три стадии при температуре 40 °С. Продолжительность каждой стадии составила 10 мин. Соотношение лецитин:ацетон (по массе) на I стадии обезжиривания составило 1:7, на II стадии – 1:6, на III – 1:5. Системы «жидкий лецитин – ацетон» и «частично обезжиренный лецитин – ацетон» в процессе обезжиривания подвергали ультразвуковому воздействию при различной удельной мощности и продолжительности воздействия. Разделение фаз на раствор нейтральных липидов в ацетоне и фосфолипиды осуществляли фильтрованием. Фосфолипидный изолят высушивали в вакуум-сушильном шкафу под вакуумом 5 кПа при температуре 40 °С. После каждой стадии обезжиривания определяли содержание фосфолипидов в частично обезжиренных лецитинах и фосфолипидном изоляте, а также степень извлечения нейтральных липидов после отгонки растворителя из ацетоновой мисцеллы.
Установили эффективность ультразвукового воздействия при обработке систем «лецитин – ацетон» на I стадии обезжиривания с удельной мощностью 0,28 Вт/см3, на II и III стадиях – 0,36 Вт/см3. Применение ультразвукового воздействия на I и II стадиях обезжиривания в течение 3 мин, а на III стадии в течение 2 мин позволяет сократить расход ацетона в 1,2 раза и получить фосфолипидный изолят с содержанием фосфолипидов на 3,3 % выше по сравнению с обезжириванием контрольного образца (без обработки ультразвуковым воздействием).
В работе была показана эффективность применения ультразвукового воздействия для интенсификации процесса обезжиривания жидкого соевого лецитина в три стадии со снижением расхода растворителя. Разработали технологические режимы получения фосфолипидного изолята с высоким содержанием целевого компонента – собственно фосфолипидов (98,6 %), который может быть рекомендован в качестве пищевой добавки в технологиях продуктов питания.
Ключевые слова
Соевый лецитин, фосфолипиды, обезжиривание, ультразвук, интенсификация, фосфолипидный изолятФИНАНСИРОВАНИЕ
Исследование выполнено за счет средств гранта № 22-26-20122 Российского научного фонда (РНФ) и Кубанского научного фонда.СПИСОК ЛИТЕРАТУРЫ
- Alhajj MJ, Montero N, Yarce CJ, Salamanca CH. Lecithins from vegetable, land, and marine animal sources and their potential applications for cosmetic, food, and pharmaceutical sectors. Cosmetics. 2020;7(4). https://doi.org/10.3390/cosmetics7040087
- Gutiérrez‐Méndez N, Chavez‐Garay DR, Leal-Ramos MY. Lecithins: A comprehensive review of their properties and their use in formulating microemulsions. Journal of Food Biochemistry. 2022;46(7). https://doi.org/10.1111/jfbc.14157
- Arepally D, Reddy RS, Goswami TK, Datta AK. Biscuit baking: A review. LWT. 2020;131. https://doi.org/10.1016/j.lwt.2020.109726
- Wang M, Yan W, Zhou Y, Fan L, Liu Y, Li J. Progress in the application of lecithins in water-in-oil emulsions. Trends in Food Science and Technology. 2021;118:388–398. https://doi.org/10.1016/j.tifs.2021.10.019
- Robert C, Couëdelo L, Vaysse C, Michalski MC. Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie. 2020;169:121–132. https://doi.org/10.1016/j.biochi.2019.11.017
- Küllenberg D, Taylor LA, Schneider M, Massing U. Health effects of dietary phospholipids. Lipids in Health and Disease. 2012;11. https://doi.org/10.1186/1476-511X-11-3
- Robert C, Vaysse C, Michalski M-C. Vegetable lecithins: Their metabolic impacts as food-grade ingredients. Cahiers de Nutrition et de Diététique. 2021;56(6):360–367. https://doi.org/10.1016/j.cnd.2021.06.002
- Bot F, Cossuta D, O'Mahony JA. Inter-relationships between composition, physicochemical properties and functionality of lecithin ingredients. Trends in Food Science and Technology. 2021;111:261–270. https://doi.org/10.1016/j.tifs.2021.02.028
- Lehri D, Kumari N, Singh RP, Sharma V. Composition, production, physicochemical properties and applications of lecithin obtained from rice (Oryza sativa L.) – A review. Plant Science Today. 2019;6(sp1):613–622. https://doi.org/10.14719/pst.2019.6.sp1.682
- Lisovaya E, Viktorova E, Zhane M, Vorobyova O, Velikanova E. Research of the chemical composition peculiarities of food additives – vegetable lecithins for the development of methods for assessing their quality. BIO Web of Conferences. 2021;34. https://doi.org/10.1051/bioconf/20213406009
- Лисовая Е. В., Викторова Е. П., Лисовой В. В. Анализ ассортимента лецитинов, представленных на российском рынке // Технологии пищевой и перерабатывающей промышленности АПК – продукты здорового питания. 2019. Т. 28. № 2. С. 51–55. https://www.elibrary.ru/OHKTFS
- van Nieuwenhuyzen W, Tomás MC. Update on vegetable lecithin and phospholipid technologies. European Journal of Lipid Science and Technology. 2008;110(5):472–486. https://doi.org/10.1002/ejlt.200800041
- Cabezas DM, Madoery R, Diehl BWK, Tomás MC. Emulsifying properties of different modified sunflower lecithins. Journal of the American Oil Chemists' Society. 2012;89(2):355–361. https://doi.org/10.1007/s11746-011-1915-8
- Miyasaki EK, Luccas V, Kieckbusch TG. Modified soybean lecithins as inducers of the acceleration of cocoa butter crystallization. European Journal of Lipid Science and Technology. 2016;118(10):1539–1549. https://doi.org/10.1002/ejlt.201500093
- Bueschelberger HG, Tirok S, Stoffels I, Schoeppe A. Lecithins. In: Norn V, editor. Emulsifiers in food technology. John Wiley and Sons, Ltd; 2014. pp. 21–60. https://doi.org/10.1002/9781118921265.ch2
- Joshi A, Paratkar SG, Thorat BN. Modification of lecithin by physical, chemical and enzymatic methods. European Journal of Lipid Science and Technology. 2006;108(4):363–373. https://doi.org/10.1002/ejlt.200600016
- Способ получения фосфолипидного пищевого продукта: пат. 2184459C1 Рос. Федерация. № 2001120615/13 / Сипки Р. Р., Науменко Ю. Ю., Китаинов Б. В.; заявл. 23.07.2001; опубл. 10.07.2002. 5 с.
- Способ выделения фосфолипидов из фосфатидного концентрата: пат. 54922 Украина. № u201007237 / Шульга С. М., Глух А. И., Глух И. С.; заявл. 11.06.2010; опубл. 25.11.2010.
- Комплексная переработка фосфолипидных фракций нерафинированных растительных масел: анализ инновационных технических подходов / И. А. Глотова [и др.] // Пищевая промышленность. 2019. № 1. С. 32–36. https://www.elibrary.ru/YXHEVN
- Roselló-Soto E, Galanakis CM, Brnčić M, Orlien V, Trujillo FJ, Mawson R, et al. Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends in Food Science and Technology. 2015;42(2):134–149. https://doi.org/10.1016/j.tifs.2015.01.002
- Bredihin SA, Andreev VN, Martekha AN, Schenzle MG, Korotkiy IA. Erosion potential of ultrasonic food processing. Foods and Raw Materials. 2021;9(2):335–344. https://doi.org/10.21603/2308-4057-2021-2-335-344
- Paymulina AV, Potoroko IYu, Naumenko NV, Motovilov OK. Sonochemical microstructuring of sodium alginate to increase its effectiveness in bakery. Food Processing: Techniques and Technology. 2023;53(1):13–24. (In Russ.). https://doi.org/10.21603/2074-9414-2023-1-2411