ISSN 2074-9414 (Печать),
ISSN 2313-1748 (Онлайн)

Биофункциональная активность in vivo хлорогеновой кислоты и биоханина А, выделенных из экстрактов каллусной культуры Trifolium pratense L.

Аннотация
Полифенолы представляют интерес как потенциальные нейропротекторы, которые увеличивают продолжительность жизни и замедляют старение. Перспективным источником биологически активных веществ является клевер луговой (Trifolium pratense L.), в экстрактах которого присутствуют биоханин А и хлорогеновая кислота. Цель работы – установить наличие/отсутствие влияния полифенолов, выделенных из экстрактов каллусных культур T. pratense на экспрессию генов SOD-3 и HSP-16.2 и антиамилойдной активности с помощью модельных организмов – нематод Caenorhabditis elegans.
Объектами исследования являлись хлорогеновая кислота и биоханин А (200, 100, 50 и 10 мкМ) чистотой 95 %, которые выделили из экстрактов каллусов клевера лугового. Влияние полифенолов на экспрессию SOD-3 и HSP-16.2 оценивали при тепловом стрессе (35 °С) в течение 5 и 2 ч соответственно, используя C. elegans N2 Bristol. Нейропротекторную активность оценивали по количеству парализованных C. elegans CL4176 после 18, 40 и 62 ч инкубации. Установлено, что дозазависимый эффект между концентрацией биологически активных веществ и процентом парализованных нематод наблюдался при 18 ч культивирования. Максимальные результаты уменьшения фенотипа парализации наблюдались при добавлении растворов концентрацией 200 мкМ. Активность 200 мкМ биохнина А была в 1,18 раз выше 200 мкМ раствора хлорогеновой кислоты. Растворы биоханина А увеличивали экспрессию SOD-3 только в 3,7 раз в сравнении с контролем.
Полученные результаты показали, что исследуемые биологически активные вещества проявляли относительную нейропротекторную активность и способность влиять на экспрессию гена антиоксидантной защиты организма, используя модельный объект C. elegans.
Ключевые слова
Старение, болезнь Альцгеймера, нейропротекторы, полифенолы, хлорогеновая кислота, биоханин А, Caenorhabditis elegans, β-амилоидный пептид
ФИНАНСИРОВАНИЕ
Работа выполнена в рамках государственного задания по теме «Полифенолы растений СФО: оценка молекулярной и пространственной структуры веществ, характеристика биофункциональных свойств и токсикологических показателей безопасности на модельных системах in vivo» (проект FZSR-2023-0002) с использованием оборудования ЦКП «Инструментальные методы анализа в области прикладной биотехнологии» на базе Кемеровского государственного университета (КемГУ).
СПИСОК ЛИТЕРАТУРЫ
  1. Abate G, Marziano M, Rungratanawanich W, Memo M, Uberti D. Nutrition and AGE-ing: Focusing on Alzheimer's disease. Oxidative Medicine and Cellular Longevity. 2017;2017. https://doi.org/10.1155/2017/7039816
  2. Gonzalez-Freire M, Diaz-Ruiz A, Hauser D, Martinez-Romero J, Ferrucci L, Bernier M, et al. The road ahead for health and lifespan interventions. Ageing Research Reviews. 2020;59. https://doi.org/10.1016/j.arr.2020.101037
  3. Bitto A, Wang AM, Bennett CF, Kaeberlein M. Biochemical genetic pathways that modulate aging in multiple species. Cold Spring Harbor Perspectives in Medicine. 2015;5. https://doi.org/10.1101/cshperspect.a025114
  4. Rusek M, Pluta R, Ułamek-Kozioł M, Czuczwar SJ. Ketogenic diet in Alzheimer's disease. International Journal of Molecular Sciences. 2019;20(16). https://doi.org/10.3390/ijms20163892
  5. Collins AE, Saleh TM, Kalisch BE. Naturally occurring antioxidant therapy in Alzheimer's disease. Antioxidants. 2022;11(2). https://doi.org/10.3390/antiox11020213
  6. Wang Y, Wang K, Yan J, Zhou Q, Wang X. Recent progress in research on mechanisms of action of natural products against Alzheimer's disease: Dietary plant polyphenols. International Journal of Molecular Sciences. 2022;23(22). https://doi.org/10.3390/ijms232213886
  7. Просеков А. Ю., Остроумов Л. А. Инновационный менеджмент биотехнологий заквасочных культур // Техника и технология пищевых производств. 2016. Т. 43. № 4. С. 64–69. https://www.elibrary.ru/XELELB
  8. Харитонов Д. В., Харитонова И. В., Просеков А. Ю. Разработка концепции создания синбиотиков и синбиотических молочных продуктов // Техника и технология пищевых производств. 2013. Т. 31. № 4. С. 91–94. https://www.elibrary.ru/RNIEON
  9. Vesnina A, Prosekov A, Atuchin V, Minina V, Ponasenko A. Tackling atherosclerosis via selected nutrition. International Journal of Molecular Sciences. 2022;23(15). https://doi.org/10.3390/ijms23158233
  10. McGrattan AM, McGuinness B, McKinley MC, Kee F, Passmore P, Woodside JV, et al. Diet and inflammation in cognitive ageing and Alzheimer's disease. Current Nutrition Reports. 2019;8:53–65. https://doi.org/10.1007/s13668-019-0271-4
  11. Hu N, Yu J-T, Tan L, Wang Y-L, Sun L, Tan L. Nutrition and the risk of Alzheimer's disease. BioMed Research International. 2013;2013. https://doi.org/10.1155/2013/524820
  12. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry. 2022;383. https://doi.org/10.1016/j.foodchem.2022.132531
  13. Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary polyphenols: A multifactorial strategy to target Alzheimer's disease. International Journal of Molecular Sciences. 2019;20(20). https://doi.org/10.3390/ijms20205090
  14. Xin L, Yamujala R, Wang Y, Huan W, Wu W-H, Lawton MA, et al. Acetylcholineestarase-inhibiting alkaloids from Lycoris radiata delay paralysis of amyloid beta-expressing transgenic C. elegans CL4176. PloS ONE. 2013;8(5). https://doi.org/10.1371/journal.pone.0063874
  15. Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, et al. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. Journal of Neuroscience. 2006;26(50):13102–13113. https://doi.org/10.1523/JNEUROSCI.3448-06.2006
  16. Nguyen TS, Alekseeva GM, Generalova YuE, Kaukhova IE, Sorokin VV. Determination of isoflavone content by HPLC in dried extract of Trifolium pratense L. Journal of Pharmaceuticals Quality Assurance Issue. 2020;27(1):48–53. (In Russ.). https://doi.org/10.34907/JPQAI.2020.60.61.006
  17. Dyshlyuk LS, Osintseva MA, Kozlova OV, Fotina NV, Prosekov AYu. Antiradical and oxidative stress release properties of Trifolium pratense L. extract. Journal of Experimental Biology and Agricultural Sciences. 2022;10(4):852–860. https://doi.org/10.18006/2022.10(4).852.860
  18. Temerdashev ZA, Chubukina TK, Vinitskaya EA, Nagalevskii MV, Kiseleva NV. Assessment of the concentrations of isoflavonoids in red clover (Trifolium pratense L.) of the Fabaceae family using extraction by different methods. Journal of Analytical Chemistry. 2021;76(9):819–831. (In Russ.). https://doi.org/10.31857/S0044450221090115
  19. Bijttebier S, van der Auwera A, Voorspoels S, Noten B, Hermans N, Pieters L, et al. A first step in the quest for the active constituents in Filipendula ulmaria (meadowsweet): Comprehensive phytochemical identification by liquid chromatography coupled to quadrupole-orbitrap mass spectrometry. Planta Medica. 2016;82(6):559–572. https://doi.org/10.1055/s-0042-101943
  20. Kapil A, Koul IB, Suri OP. Antihepatotoxic effects of chlorogenic acid from Anthocephalus cadamba. Phytotherapy Research. 1995;9(3):189–193. https://doi.org/10.1002/ptr.2650090307
  21. Rashidi R, Rezaee R, Shakeri A, Wallace Hayes A, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. Journal of Food Biochemistry. 2022;46(9). https://doi.org/10.1111/jfbc.14254
  22. Dmitrieva A, Vesnina A, Dyshlyuk L. Antioxidant and antimicrobial properties of squalene from Symphytum officinale and chlorogenic acid from trifolium pretense. AIP Conference Proceedings. 2022;2636(1). https://doi.org/10.1063/5.0104513
  23. Ishida K, Yamamoto M, Misawa K, Nishimura H, Misawa K, Ota N, et al. Coffee polyphenols prevent cognitive dysfunction and suppress amyloid β plaques in APP/PS2 transgenic mouse. Neuroscience Research. 2020;154:35–44. https://doi.org/10.1016/j.neures.2019.05.001
  24. Nabavi SF, Tejada S, Setzer WN, Gortzi O, Sureda A, Braidy N, et al. Chlorogenic acid and mental diseases: From chemistry to medicine. Current Neuropharmacology. 2017;15(4):471–479. https://doi.org/10.2174/1570159X14666160325120625
  25. Singh SS, Rai SN, Birla H, Zahra W, Kumar G, Gedda MR, et al. Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse. Frontiers in Pharmacology. 2018;9. https://doi.org/10.3389/fphar.2018.00757
  26. Amato A, Terzo S, Mulè F. Natural compounds as beneficial antioxidant agents in neurodegenerative disorders: A focus on Alzheimer's disease. Antioxidants. 2019;8(12). https://doi.org/10.3390/antiox8120608
  27. Tan JW, Kim MK. Neuroprotective effects of biochanin A against β-amyloid-induced neurotoxicity in PC12 cells via a mitochondrial-dependent apoptosis pathway. Molecules. 2016;21(5). https://doi.org/10.3390/molecules21050548
  28. Biradar SM, Joshi H, Chheda TK. Biochanin-A ameliorates behavioural and neurochemical derangements in cognitive-deficit mice for the betterment of Alzheimer's disease. Human and Experimental Toxicology. 2014;33(4):369–382. https://doi.org/10.1177/0960327113497772
  29. Youn K, Park J-H, Lee J, Jeong W-S, Ho C-T, Jun M. The identification of biochanin A as a potent and selective β-site app-cleaving enzyme 1 (BACE1) inhibitor. Nutrients. 2016;8(10). https://doi.org/10.3390/nu8100637
  30. Park H-EH, Jung Y, Lee S-JV. Survival assays using Caenorhabditis elegans. Molecules and Cells. 2017;40(2):90–99. https://doi.org/10.14348/molcells.2017.0017
  31. Amrit FRG, Ratnappan R, Keith SA, Ghazi A. The C. elegans lifespan assay toolkit. Methods. 2014;68(3):465–475. https://doi.org/10.1016/j.ymeth.2014.04.002
  32. Nigon VM, Félix M-A. History of research on C. elegans and other free-living nematodes as model organisms. WormBook. 2017. pp. 1–84. https://doi.org/10.1895/wormbook.1.181.1
  33. Vesnina AD, Dolganyuk VF, Dmitrieva AI, Loseva AI, Milentyeva IS. Evaluation of the geroprotective effect of squalene on the Caenorhabditis elegans model. Siberian Journal of Life Sciences and Agriculture. 2022;14(6):51–69. (In Russ.). https://doi.org/10.12731/2658-6649-2022-14-6-51-69
  34. Shen P, Yue Y, Zheng Jo, Park Y. Caenorhabditis elegans: A convenient in vivo model for assessing the impact of food bioactive compounds on obesity, aging, and Alzheimer's disease. Annual Review of Food Science and Technology. 2018;9:1–22. https://doi.org/10.1146/annurev-food-030117-012709
  35. Krishnan N, Konidaris KF, Gasser G, Tonks NK. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. Journal of Biological Chemistry. 2018;293(5):1517–1525. https://doi.org/10.1074/jbc.C117.819110
  36. Zhu Z, Yang T, Zhang L, Liu L, Yin E, Zhang C, et al. Inhibiting Aβ toxicity in Alzheimer's disease by a pyridine amine derivative. European Journal of Medicinal Chemistry. 2019;168:330–339. https://doi.org/10.1016/j.ejmech.2019.02.052
  37. Limbocker R, Chia S, Ruggeri FS, Perni M, Cascella R, Heller GT, et al. Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nature Communications. 2019;10. https://doi.org/10.1038/s41467-018-07699-5
  38. Kato M, Chen X, Inukai S, Zhao H, Slack FJ. Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA. 2011;17:1804–1820. https://doi.org/10.1261/rna.2714411
  39. Rangaraju S, Solis GM, Thompson RC, Gomez-Amaro RL, Kurian L, Encalada SE, et al. Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. eLife. 2015;4. https://doi.org/10.7554/eLife.08833.001
  40. Gu J, Li Q, Liu J, Ye Z, Feng T, Wang G, et al. Ultrasonic–assisted extraction of polysaccharides from Auricularia auricula and effects of its acid hydrolysate on the biological function of Caenorhabditis elegans. International Journal of Biological Macromolecules. 2021;167:423–433. https://doi.org/10.1016/j.ijbiomac.2020.11.160
  41. Karpushina MV, Suprun II, Lobodina ЕV. Aplication of biotechnological methods in the nursery industry. Fruit Growing and Viticulture of South Russia. 2021;(71):116–130. (In Russ.). https://doi.org/10.30679/2219-5335-2021-5-71-116-130
  42. Dyshlyuk LS, Fedorova AM, Loseva AI, Eremeeva NI. Callus cultures of Thymus vulgaris and Trifolium pratense as a source of geroprotectors. Food Processing: Techniques and Technology. 2021;51(2):423–432. https://doi.org/10.21603/2074-9414-2021-2-423-432
  43. Gamborg OL, Miller RA, Ojima O. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research. 1968;50(1):151–158. https://doi.org/10.1016/0014-4827(68)90403-5
  44. Faskhutdinova ER, Sukhikh AS, Le VM, Minina VI, Khelef MEA, Loseva AI. Effects of bioactive substances isolated from Siberian medicinal plants on the lifespan of Caenorhabditis elegans. Foods and Raw Materials. 2022;10(2):340–352. https://doi.org/10.21603/2308-4057-2022-2-544
  45. Malca-Garcia GR, Liu Y, Nikolić D, Friesen JB, Lankin DC, McAlpine JB, et al. Investigation of red clover (Trifolium pratense) isoflavonoid residual complexity by off-line CCS-qHNMR. Fitoterapia. 2022;156. https://doi.org/10.1016/j.fitote.2021.105016
  46. Drake J, Link CD, Butterfield DA. Oxidative stress precedes fibrillar deposition of Alzheimer's disease amyloid beta-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiology of Aging. 2003;24(3):415–420. https://doi.org/10.1016/S0197-4580(02)00225-7
  47. Dostal V, Link CD. Assaying β-amyloid toxicity using a transgenic C. elegans model. Journal of Visualized Experiment. 2010;44. https://doi.org/10.3791/2252
  48. Fedorova AM, Dyshlyuk LS, Milentyeva IS, Loseva AI, Neverova OA, Khelef MEA. Geroprotective activity of trans-cinnamic acid isolated from the Baikal skullcap (Scutellaria baicalensis). Food Processing: Techniques and Technology. 2022;52(3):582–591. (In Russ.). https://doi.org/10.21603/2074-9414-2022-3-2388
  49. Sonani RR, Singh NK, Awasthi A, Prasad B, Kumar J, Madamwar D. Phycoerythrin extends life span and health span of Caenorhabditis elegans. AGE. 2014;36. https://doi.org/10.1007/s11357-014-9717-1
  50. Leite NR, de Araújo LCA, da Rocha PS, Agarrayua DA, Ávila DS, Carollo CA, et al. Baru Pulp (Dipteryx alata Vogel): Fruit from the Brazilian savanna protects against oxidative stress and increases the life expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules. 2020;10(8). https://doi.org/10.3390/biom10081106
  51. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. https://doi.org/10.1006/meth.2001.1262
  52. Dimitriadi TA, Burtsev DV, Dzhenkova EA, Kutilin DS. Differential expression of microRNAS and their target genes in cervical intraepithelial neoplasias of varying severity. Advances in Molecular Oncology. 2020;7(2):47–61. (In Russ.). https://doi.org/10.17650/2313-805X-2020-7-2-47-61
  53. Martorell P, Llopis S, Gonzalez N, Ramón D, Serrano G, Torrens A, et al. A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid β peptide toxicity in Caenorhabditis elegans. Food Science and Nutrition. 2016;5(2):255–265. https://doi.org/10.1002/fsn3.388
  54. Qin Y, Chen F, Tang Z, Ren H, Wang Q, Shen N, et al. Ligusticum chuanxiong Hort as a medicinal and edible plant foods: Antioxidant, anti-aging and neuroprotective properties in Caenorhabditis elegans. Frontiers in Pharmacology. 2022;13. https://doi.org/10.3389/fphar.2022.1049890
  55. Gutierrez-Zetina SM, González-Manzano S, Ayuda-Durán B, Santos-Buelga C, González-Paramás AM. Caffeic and dihydrocaffeic acids promote longevity and increase stress resistance in Caenorhabditis elegans by modulating expression of stress-related genes. Molecules. 2021;26(6). https://doi.org/10.3390/molecules26061517
  56. Haridevamuthu B, Guru A, Murugan R, Sudhakaran G, Pachaiappan R, Almutairi MH, et al. Neuroprotective effect of Biochanin A against Bisphenol A-induced prenatal neurotoxicity in zebrafish by modulating oxidative stress and locomotory defects. Neuroscience Letters. 2022;790. https://doi.org/10.1016/j.neulet.2022.136889
  57. Zhou Y, Xu B, Yu H, Zhao W, Song X, Liu Y, et al. Biochanin A attenuates ovariectomy-induced cognition deficit via antioxidant effects in female rats. Frontiers in Pharmacology. 2021;12. https://doi.org/10.3389/fphar.2021.603316
  58. Singh L, Kaur N, Bhatti R. Neuroprotective potential of biochanin-A and review of the molecular mechanisms involved. Molecular Biology Reports. 2023;50:5369–5378. https://doi.org/10.1007/s11033-023-08397-2
  59. Socała K, Szopa A, Serefko A, Poleszak E, Wlaź P. Neuroprotective effects of coffee bioactive compounds: A review. International Journal of Molecular Sciences. 2021;22(1). https://doi.org/10.3390/ijms22010107
Как цитировать?
Биофункциональная активность in vivo хлорогеновой кислоты и биоханина А, выделенных из экстрактов каллусной культуры Trifolium pratense L. / И. С. Милентьева [и др.] // Техника и технология пищевых производств. 2023. Т. 53. № 4. С. 754–765. https://doi.org/10.21603/2074-9414-2023-4-2475 
О журнале