Аннотация
При выпечке сбивных бездрожжевых хлебобулочных изделий актуальным является внедрение эффективных источников подвода энергии к тестовым заготовкам для снижения энергозатрат и продолжительности выпечки, а также для повышения качества изделий. Целью работы являлась формализация математической модели процесса СВЧ и конвективной выпечки хлеба из сбивного теста на основе основных уравнений тепломассообмена и ее верификация.Для проверки точности расчетов по разработанной математической модели провели натурный эксперимент. Он заключался в оценке нагрева сбивных тестовых заготовок влажностью 56 ± 1 % при СВЧ и конвективной выпечке до достижения температуры в центре мякиша хлеба 98 ± 1 °С.
Математическая модель выпечки формализована в виде уравнений сохранения энергии и массы. Это позволяет рассматривать процесс выпечки хлеба как нестационарный процесс тепло- и массопереноса влаги в изотропной несжимаемой сплошной среде в диффузионном приближении с учетом подвижной границы фазового перехода. Верификация математической модели показала, что оценка средней относительной погрешности составила для СВЧ-выпечки 14,5 % по температуре и 18,2 % по влагосодержанию, для конвективной выпечки 12,6 % по температуре и 9,7 % по влагосодержанию. Проведенные исследования позволили сделать вывод о адекватности математической модели реальным процессам тепломассообмена, а также приемлемой для оптимизации процесса погрешности расчета полей температуры и влагосодержания.
Разработанная физико-математическая модель процесса выпечки позволяет оценить динамику температурных и влагоконцентрационных полей в тестовой заготовке в зависимости от технологических параметров. Математическая модель и результаты вычислительных экспериментов могут быть использованы для идентификации статических и динамических характеристик процесса выпечки как объекта автоматического управления, выявления предпочтительных каналов управления и выбора управляющих воздействий, а также для синтеза системы автоматического управления процессом выпечки по заданным показателям качества.
Ключевые слова
Хлеб, сбивное тесто, хлебный мякиш, хлебная корка, СВЧ-выпечка, конвективная выпечка, тепломассоперенос, математическое моделирование, задача СтефанаФИНАНСИРОВАНИЕ
Работа выполнена на базе Воронежского государственного университета инженерных технологий (ВГУИТ).СПИСОК ЛИТЕРАТУРЫ
- Rudnev SD, Shevchenko TV, Ustinova YuV, Kryuk RV, Ivanov VV, Chistyakov AM. Technology and theory of mechanically activated water in bakery industry. Food Processing: Techniques and Technology. 2021;51(4):768–778. (In Russ.). https://doi.org/10.21603/2074-9414-2021-4-768-778
- Kulishov BA, Novosyolov AG, Ivashchenko SYu, Gusarov NE. Electric contact heating in baking: A review. Polzunovsky Vestnik. 2019;(1):106–113. (In Russ.). https://doi.org/10.25712/ASTU.2072-8921.2019.01.020
- Маклюков В. И. Анализ методов моделирования процесса выпечки хлеба // Хлебопродукты. 2021. № 7. С. 26–32. https://elibrary.ru/IQUUCR
- Magomedov GO, Khvostov AА, Zhuravlev AА, Magomedov MG, Taratukhin AS, Plotnikova IV. Formation of whipped yeast-free bread crumb with intensive microwave convective baking. Food Processing: Techniques and Technology. 2022;52(3):426–438. (In Russ.). https://doi.org/10.21603/2074-9414-2022-3-2375
- Purlis E, Cevoli C, Fabbri A. Modeling volume change and deformation in food products/processes: An overview. Foods. 2021;10(4). https://doi.org/10.3390/foods10040778
- Houšová J, Hoke K. Temperature profiles in dough products during microwave heating with susceptors. Czech Journal of Food Sciences. 2002;20(4):151–160. https://doi.org/10.17221/3526-CJFS
- Kristiawan M, Valle GD, Kansou K, Ndiaye A, Vergnes B. Validation and use for product optimization of a phenomenological model of starch foods expansion by extrusion. Journal of Food Engineering. 2018;246:160–178. https://doi.org/10.1016/j.jfoodeng.2018.11.006
- Roohi R, Hashemi SMB. Experimental, heat transfer and microbial inactivation modeling of microwave pasteurization of carrot slices as an efficient and clean process. Food and Bioproducts Processing. 2020;121:113–122. https://doi.org/10.1016/j.fbp.2020.01.015
- Pham ND, Khan MIH, Karim MA. A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying. Food Chemistry. 2020;325. https://doi.org/10.1016/j.foodchem.2020.126932
- Purlis E. Modeling convective drying of foods: A multiphase porous media model considering heat of sorption. Journal of Food Engineering. 2019;263:132–146. https://doi.org/10.1016/j.jfoodeng.2019.05.028
- Salah K, Olkhovatov EA, Aïder M. Effect of canola proteins on rice flour bread and mathematical modelling of the baking process. Journal of Food Science and Technology. 2019;56(8):3744–3753. https://doi.org/10.1007/s13197-019-03842-2
- Garg A, Malafronte L, Windhab E. Baking kinetics of laminated dough using convective and microwave heating. Food and Bioproducts Processing. 2019;115:59–67. https://doi.org/10.1016/j.fbp.2019.02.007
- Purlis E. Simple methods to predict the minimum baking time of bread. Food Control. 2019;104:217–223. https://doi.org/10.1016/j.foodcont.2019.04.021
- Mosalam H. Digital modeling of heat transfer during the baking process. Modelling and Simulation in Engineering. 2021;2021. https://doi.org/10.1155/2021/8957148
- Hou L, Li R, Wang S, Datta AK. Numerical analysis of heat and mass transfers during intermitten microwave drying of Chinese jujube (Zizyphus jujuba Miller). Food and Bioproducts Processing. 2021;129:10–23. https://doi.org/10.1016/j.fbp.2021.06.005
- Schiano Di Cola V, Cuomo S, Severino G. Remarks on the numerical approximation of Dirac delta functions. Results in Applied Mathematics. 2021;12. https://doi.org/10.1016/j.rinam.2021.100200
- Dien Vu K, Bazhenova S. Modeling the influence of input factors on foam concrete properties. Magazine of Civil Engineering. 2021;(3). https://doi.org/10.34910/MCE.103.11
- Purlis E. Simple methods to predict the minimum baking time of bread. Food Control. 2019;104:217–223. https://doi.org/10.1016/j.foodcont.2019.04.021
- Thuengtung S, Ogawa Y. Comparative study of conventional steam cooking and microwave cooking on cooked pigmented rice texture and their phenolic antioxidant. Food Science and Nutrition. 2020;8(2):965–972. https://doi.org/10.1002/fsn3.1377
- Al-Nasser M, Fayssal I, Moukalled F. Numerical simulation of bread baking in a convection oven. Applied Thermal Engineering. 2020;184. https://doi.org/10.1016/j.applthermaleng.2020.116252