Аннотация
В пищевой отрасли существует тенденция перехода с традиционных видов сырья, которые характеризуются высокой влажностью, на их аналоги в сухом виде. Цель исследования – обосновать возможные конструкции вертикальных вибрационных смесителей, предназначенных для получения мучных смесей.Объектом исследования являлись характеристики вертикальных вибрационных смесителей при получении мучных смесей, изучение которых позволило бы спрогнозировать качество получаемого продукта. Для получения смесей использовали муку пшеничную хлебопекарную I сорта, сахар белый, соль пищевую, порошок яичный и молоко сухое.
Научно обосновали возможность расширения области применения вертикальных вибрационных смесителей, предназначенных для зернистых материалов. Предложили три вертикальных вибрационных смесителя непрерывного действия для получения мучных смесей: подъемный, прямоточный и каскадный. Пшеничная мука, которая является основой мучных смесей, переходит на рабочем органе смесителя в устойчивое виброкипящее состояние в слоях толщиной не более 35 мм при амплитуде колебаний 4,5 мм и частоте более 20 Гц. Скорость движения муки растет с увеличением частоты колебаний рабочего органа и размеров площади перфорации, но падает с повышением высоты слоя. Эффективность данных аппаратов возрастает пропорционально увеличению площади отверстий на рабочих витках смесителей, а также от максимального слоя высоты муки. Наиболее эффективным из предложенных конструкций является прямоточный вибрационный смеситель. Периодичность импульсного дозирования ингредиентов в смеситель для получения мучных смесей удовлетворительного качества (Vc ≤ 14,5 %) не должна превышать половины, а хорошего (Vc ≤ 6 %) четверти среднего времени пребывания частиц в аппарате.
Результаты работы представляют значимость при проектировании технологических линий производства мучных смесей.
Ключевые слова
Пищевая промышленность, порошок, смесь, смешивание, вибрация, псевдоожижение, смеситель, производительность, качествоСПИСОК ЛИТЕРАТУРЫ
- van Zutphen KG, Lingala S, Bajoria M, Beesabathuni K, Kraemer K. The role of international agencies in achieving food security. In: Ferranti P, Berry EM, Anderson JR, editors. Encyclopedia of food security and sustainability. Elsevier; 2019. pp. 149–164. https://doi.org/10.1016/B978-0-08-100596-5.22447-5
- Brunstrom JM, Flynn AN, Rogers PJ, Zhai Yu, Schatzker M. Human nutritional intelligence underestimated? Exposing sensitivities to food composition in everyday dietary decisions. Physiology and Behavior. 2023;263. https://doi.org/10.1016/j.physbeh.2023.114127
- Jeddi MZ, Boon PE, Cubadda F, Hoogenboom R, Mol H, Verhagen H, et al. A vision on the “foodture” role of dietary exposure sciences in the interplay between food safety and nutrition. Trends in Food Science and Technology. 2022;120:288–300. https://doi.org/10.1016/j.tifs.2022.01.024
- Ferreira H, Vasconcelos M, Gil AM, Pinto E. Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Critical Reviews in Food Science and Nutrition. 2021;61(1):85–96. https://doi.org/10.1080/10408398.2020.1716680
- Mariotti F, Gardner DC. Dietary protein and amino acids in vegetarian diets – A review. Nutrients. 2019;11(11). https://doi.org/10.3390/nu11112661
- Nosworthy MG, Hernandez-Alvarez AJ, Franczyk AJ, Medina G, Neufeld J, Arcand Y, et al. Effect of cooking on the in vitro and in vivo protein quality of soy, oat and wheat varieties. Cereal Chemistry. 2023;100(2):460–472. https://doi.org/10.1002/cche.10623
- Hafizov SG, Musina ON, Hafizov GK. Extracting hydrophilic components from pomegranate peel and pulp. Food Processing: Techniques and Technology. 2023;53(1):168–182. (In Russ.). https://doi.org/10.21603/2074-9414-2023-1-2425
- Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2019;393(10184):1958–1972. https://doi.org/10.1016/S0140-6736(19)30041-8
- Livingstone KM, Ramos-Lopez O, Pérusse L, Kato H, Ordovas JM, Martínez JA. Reprint of: Precision nutrition: A review of current approaches and future endeavors. Trends in Food Science and Technology. 2022;130:51–62. https://doi.org/10.1016/j.tifs.2022.10.010
- Brennan L, de Roos B. Nutrigenomics: Lessons learned and future perspectives. The American Journal of Clinical Nutrition. 2021;113(3):503–516. https://doi.org/10.1093/ajcn/nqaa366
- Bush CL, Blumberg JB, El-Sohemy A, Minich DM, Ordovás JM, Reed DG, et al. Toward the definition of personalized nutrition: A proposal by the American Nutrition Association. Journal of the American College of Nutrition. 2020;39(1):5–15. https://doi.org/10.1080/07315724.2019.1685332
- Rawat M, Varshney A, Rai M, Chikara A, Pohty AL, Joshi A, et al. A comprehensive review on nutraceutical potential of underutilized cereals and cereal-based products. Journal of Agriculture and Food Research. 2023;12. https://doi.org/10.1016/j.jafr.2023.100619
- Laskowski W, Górska-Warsewicz H, Rejman K, Czeczotko M, Zwolińska J. How important are cereals and cereal products in the average polish diet? Nutrients. 2019;11(3). https://doi.org/10.3390/nu11030679
- Martineau-Côté D, Achouri A, Pitre M, Wanasundara J, Karboune S, L'Hocine L. Investigation of the nutritional quality of raw and processed Canadian faba bean (Vicia faba L.) flours in comparison to pea and soy using a human in vitro gastrointestinal digestion model. Food Research International. 2023;173(1). https://doi.org/10.1016/j.foodres.2023.113264
- Vela AJ, Villanueva M, Ronda F. Physical modification caused by acoustic cavitation improves rice flour bread-making performance. LWT. 2023;183. https://doi.org/10.1016/j.lwt.2023.114950
- Borodulin DМ, Sukhorukov DV, Musina ON, Shulbaeva MT, Zorina TV, Kiselev DI, et al. Flour baking mixes: Optimal operating parameters for vibration mixers. Food Processing: Techniques and Technology. 2021;51(1):196–208. (In Russ.). https://doi.org/10.21603/2074-9414-2021-1-196-208
- Musina O, Putnik P, Koubaa M, Barba FJ, Greiner R, Granato D, et al. Application of modern computer algebra systems in food formulations and development: A case study. Trends in Food Science and Technology. 2017;64:48–59. https://doi.org/10.1016/j.tifs.2017.03.011
- Angizeh F, Montero H, Vedpathak A, Parvania M. Optimal production scheduling for smart manufacturers with application to food production planning. Computers and Electrical Engineering. 2020;84. https://doi.org/10.1016/j.compeleceng.2020.106609
- Mensi A, Udenigwe CC. Emerging and practical food innovations for achieving the Sustainable Development Goals (SDG) target 2.2. Trends in Food Science and Technology. 2021;111:783–789. https://doi.org/10.1016/j.tifs.2021.01.079
- Aguilera JM. The food matrix: Implications in processing, nutrition and health. Critical Reviews in Food Science and Nutrition. 2019;59(22):3612–3629. https://doi.org/10.1080/10408398.2018.1502743
- Chadare FJ, Idohou R, Nago E, Affonfere M, Agossadou J, Fassinou TK, et al. Conventional and food-to-food fortification: An appraisal of past practices and lessons learned. Food Sciences and Nutrition. 2019;7(9):2781–2795. https://doi.org/10.1002/fsn3.1133
- Granato D, Barba FJ, Kovačević DB, Lorenzo JM, Cruz AG, Putnik P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annual Review of Food Science and Technology. 2020;11:93–118. https://doi.org/10.1146/annurev-food-032519-051708
- Jaspers M, Roelofs TP, Lohrmann A, Tegel F, Maqsood MK, Song YL, et al. Process intensification using a semi-continuous mini-blender to support continuous direct compression processing. Powder Technology. 2023;428. https://doi.org/10.1016/j.powtec.2023.118844
- Bhalode P, Ierapetritou M. A review of existing mixing indices in solid-based continuous blending operations. Powder Technology. 2020;373:195–209. https://doi.org/10.1016/j.powtec.2020.06.043
- Tomita Y, Nagato T, Takeuchi Y, Takeuchi H. Control of residence time of pharmaceutical powder in a continuous mixer with impeller and scraper. International Journal of Pharmaceutics. 2020;586. https://doi.org/10.1016/j.ijpharm.2020.119520
- Tomita Y, Takeuchi Y, Natsuyama S, Takeuchi H. Characteristics of residence time distribution in a continuous high shear mixer granulation using scraper rotation. International Journal of Pharmaceutics. 2021;605. https://doi.org/10.1016/j.ijpharm.2021.120789
- Matuszek DB, Biłos ŁA. Computer image analysis as a method of evaluating the quality of selected fine-grained food mixtures. Sustainability. 2021;13(6). https://doi.org/10.3390/su13063018
- Florian M, Velázquez C, Méndez R. New continuous tumble mixer characterization. Powder Technology. 2014;256:188–195. https://doi.org/10.1016/j.powtec.2014.02.023
- Lee KT, Kimber JA, Cogoni G, Brandon JK, Wilsdon D, Verrier HM, et al. Continuous mixing technology: Characterization of a vertical mixer using residence time distribution. Journal of Pharmaceutical Sciences. 2021;110(7):2694–2702. https://doi.org/10.1016/j.xphs.2021.01.035
- Xiong H, Bao Y, Wang J, Cai Z. Power characteristic of adhesive particles mixing in a stirred tank. The Chinese Journal of Process Engineering. 2020;20(11):1273–1280. https://doi.org/10.12034/j.issn.1009-606X.220040
- Zuo Z, Chen X, Gong S, Xie G. Numerical study of the mixing process of binary-density particles in a bladed mixer. Advanced Powder Technology. 2021;32(5):1502–1520. https://doi.org/10.1016/j.apt.2021.03.009
- Ebrahimi M, Yaraghi A, Jadidi B, Ein-Mozaffari F, Lohi A. Assessment of bi-disperse solid particles mixing in a horizontal paddle mixer through experiments and DEM. Powder Technology. 2021;381:129–140. https://doi.org/10.1016/j.powtec.2020.11.041
- Yari B, Beaulieu C, Sauriol P, Bertrand F, Chaouki J. Size segregation of bidisperse granular mixtures in rotating drum. Powder Technology. 2020;374:172–184. https://doi.org/10.1016/j.powtec.2020.07.030
- Golshan S, Blais B. Insights into granular mixing in vertical ribbon mixers. The Canadian Journal of Chemical Engineering. 2021;99(7):1570–1581. https://doi.org/10.1002/cjce.23965
- Palmer J, Reynolds GK, Tahir F, Yadav IK, Meehan E, Holman J, et al. Mapping key process parameters to the performance of a continuous dry powder blender in a continuous direct compression system. Powder Technology. 2020;362:659–670. https://doi.org/10.1016/j.powtec.2019.12.028
- Deng T, Garg V, Salehi H, Bradley MSA. Correlations between segregation intensity and material properties such as particle sizes and adhesions and novel methods for assessment. Powder Technology. 2021;387:215–226. https://doi.org/10.1016/j.powtec.2021.04.023
- Bridgwater J. The mixing of cohesionless powders. Powder Technology. 1972;5(4):257–260. https://doi.org/10.1016/0032-5910(72)80028-7
- Hogg R. Characterization of relative homogeneity in particulate mixtures. International Journal of Mineral Processing. 2003;72(1–4):477–487. https://doi.org/10.1016/S0301-7516(03)00121-2
- Hogg R. Mixing and segregation in powders: Evaluation, mechanisms and processes. KONA Powder and Particle Journal. 2009;27:3–17. https://doi.org/10.14356/kona.2009005
- Bridgwater J. Fundamental powder mixing mechanisms. Powder Technology. 1976;15(2):215–236. https://doi.org/10.1016/0032-5910(76)80051-4
- Kottlan A, Glasser BJ, Khinast JG. Vibratory mixing of pharmaceutical powders on a single-tablet-scale. Powder Technology. 2021;387:385–395. https://doi.org/10.1016/j.powtec.2021.04.040
- Asachi M, Nourafkan E, Hassanpour A. A review of current techniques for the evaluation of powder mixing. Advanced Powder Technology. 2018;29(7):1525–1549. https://doi.org/10.1016/j.apt.2018.03.031
- Matuszek DB, Bierczyński K, Jędrysiak A, Kraszewska A. Homogeneity of the selected food mixes. Czech Journal of Food Sciences. 2021;39(3):197–207. https://doi.org/10.17221/225/2020-CJFS
- Bhalode P, Ierapetritou M. A review of existing mixing indices in solid-based continuous blending operations. Powder Technology. 2020;373:195–209. https://doi.org/10.1016/j.powtec.2020.06.043
- Cuq B, Berthiaux H, Gatumel C. Powder mixing in the production of food powders. In: Bhandari B, Bansal N, Zhang M, Schuck P, editors. Handbook of food powders: Processes and properties. Woodhead Publishing. 2013. pp. 200–229. https://doi.org/10.1533/9780857098672.1.200
- Borodulin DM, Zorina TV, Ivanets VN, Nevskaya EV, Turina OE, Borisova AE. Key operation parameters of the vibration mixer in the production of flour baking mixes. Food Processing: Techniques and Technology. 2019;49(1):77–84. (In Russ.). https://doi.org/10.21603/2074-9414-2019-1-77-84
- Mizonov V, Balagurov I, Berthiaux H, Gatumel C. Intensification of vibration mixing of particulate solids by means of multi-layer loading of components. Advanced Powder Technology. 2017;28(11):3049–3055. https://doi.org/10.1016/j.apt.2017.09.016
- Hashemnia K, Pourandi S. Study the effect of vibration frequency and amplitude on the quality of fluidization of a vibrated granular flow using discrete element method. Powder Technology. 2018;327:335–345. https://doi.org/10.1016/j.powtec.2017.12.097
- Dubkova N, Kharkov V, Ziganshin B. Effect of mode amplitude on power consumption in vibrating mixer. In: Radionov AA, Gasiyarov VR, editors. Proceedings of the 6th International Conference on Industrial Engineering. Cham: Springer; 2021. pp. 362–369. https://doi.org/10.1007/978-3-030-54817-9_42
- Menbari A, Hashemnia K. Effect of vibration characteristics on the performance of mixing in a vertically vibrated bed of a binary mixture of spherical particles. Chemical Engineering Science. 2019;207:942–957. https://doi.org/10.1016/J.CES.2019.07.026