ISSN 2074-9414 (Печать),
ISSN 2313-1748 (Онлайн)

Подбор параметров экстракции биоактивных веществ из лекарственных растений с применением молочной сыворотки

Аннотация
Молочная сыворотка обладает уникальным нутриентным составом и способна оказывать положительное влияние на организм человека. Однако по причине высокого содержания органических веществ, молочная сыворотка может наносить вред окружающей среде. Перспективным вариантом использования молочной сыворотки может стать её применение в качестве экстрагента для получения растительных экстрактов и извлечения из них биологически активных веществ для пищевой промышленности. На этом основании целью настоящей работы являлся подбор параметров извлечения биологически активных веществ (флавоноидов) из экстрактов растительного сырья с помощью нетрадиционного вида экстрагента, в качестве которого используется молочная сыворотка.
Объектами исследования выступали молочная сыворотка (в качестве экстрагента) и растительное сырье (в виде смесей лекарственных трав). Конечные продукты (экстракты) проверяли на содержание флавоноидных соединений методом тонкослойной хроматографии. Антиоксидантную активность оценивали с применением спектрофотометрического метода. Для повышения эффективности экстракции подбирали параметры экстрагирования (температуру, продолжительность экстракции, соотношение сырья к экстрагенту, состав растительных смесей).
Продолжительность экстрагирования выступала в качестве изменяемого параметра и составляла от 1 до 5 часов при температуре экстракции 90 ± 1 ℃. Предложенные образцы, содержащие от 7,5 до 12,5 г смесей трав в 450 мл молочной сыворотке при времени экстрагирования 3 ч обладали максимальной антиоксидантной активностью. Содержание флавоноидов в растительных экстрактах было сопоставимым и не за висело от продолжительности экстракции. Продолжительность экстракции имеет определяющее значение в интенсификации процесса получения флавоноидов из растительного сырья, поэтому выбор должен осуществляться по наименьшему значению продолжительности при сопоставимых значениях флавоноидов и максимальном уровне антиоксидантной активности.
Ключевые слова
Молочная сыворотка, экстракция, растительное сырье, флавоноиды, антиоксидантная активность, тонкослойная хроматография
ФИНАНСИРОВАНИЕ
Исследование выполнено при финансовой поддержке Российского научного фонда, грант № 23-16-00113.
СПИСОК ЛИТЕРАТУРЫ
  1. Zandona E, Blažić M, Jambrak AR. Whey Utilisation: Sustainable Uses and Environmental Approach. Food Technology and Biotechnology. 2021;59(2):147–161. https://doi.org/10.17113/ftb.59.02.21.6968
  2. Nishanthi M, Chandrapala J, Vasiljevic T. Compositional and structural properties of whey proteins of sweet, acid and salty whey concentrates and their respective spray dried powders. International Dairy Journal. 2017;74:49–56. https://doi.org/10.1016/j.idairyj.2017.01.002
  3. Božanić R, Barukčić I, Lisak K, Jakopović, Tratnik L. Possibilities of Whey Utilisation. Austin Journal of Nutrition and Food Sciences. 2014;2(7):1036.
  4. Kapoor R, Metzger LE. Evaluation of Salt Whey as an Ingredient in Processed Cheese. Journal of Dairy Science. 2004;87(5):1143–1150. https://doi.org/10.3168/jds.S0022-0302(04)73262-2
  5. El-Tanboly E-S, El-Hofi M, Youssef YB, El-Desoki W, Ismail A. Utilization of salt whey from Egyptian Ras (cephalotyre) cheese in microbial milk clotting enzymes production. Acta scientiarum polonorum. Technologia alimentaria. 2013;12(2):9–20. https://doi.org/10.21608/jfds.2012.75391
  6. Lappa IK, Papadaki A, Kachrimanidou V, Terpou A, Koulougliotis D, Eriotou E, et al. Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications. Foods. 2019;8(8):347. https://doi.org/10.3390/foods8080347
  7. Blažić M, Zavadlav S, Kralj E, Šarić G. Production of whey protein as nutritional valuable foods. Croatian Journal of Food Science and Technology. 2018;10(2):255–260. https://doi.org/10.17508/CJFST.2018.10.2.09
  8. Papademas P, Kotsaki P. Technological Utilization of Whey towards Sustainable Exploitation. Advances in Dairy Research. 2019;7(4):231. https://doi.org/10.35248/2329-888X.19.7.231
  9. Amaral GV, Silva EK, Cavalcanti RN, Martins CPC, Andrade LGZS, Moraes J, et al. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chemistry. 2018;239:697–703. https://doi.org/10.1016/j.foodchem.2017.07.003
  10. Jambrak AR, Vukuˇsi´c T, Donsi F, Paniwnyk L, Djekic I. Three Pillars of Novel Nonthermal Food Technologies: Food Safety, Quality, and Environment. Journal of Food Quality. 2018;2018:8619707. https://doi.org/10.1155/2018/8619707
  11. Rivera I, Bakonyi P, Cuautle-Marín MA, Buitrón G. Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production. Chemosphere. 2017;174:253–259. https://doi.org/10.1016/j.chemosphere.2017.01.128
  12. Blanco VMC, Oliveira GHD, Zaiat M. Dark fermentative biohydrogen production from synthetic cheese whey in an anaerobic structured-bed reactor: Performance evaluation and kinetic modeling. Renewable Energy. 2019;139:1310–1319. https://doi.org/10.1016/j.renene.2019.03.029
  13. Simone E, Tyler AII, Kuah D, Bao X, Ries ME, Baker D. Optimal Design of Crystallization Processes for the Recovery of a Slow-Nucleating Sugar with a Complex Chemical Equilibrium in Aqueous Solution: The Case of Lactose. Organic Process Research and Development. 2019;23(2):220–233. https://doi.org/10.1021/acs.oprd.8b00323
  14. Pleissner D, Dietz D, van Duuren JBeJH, Wittmann C, Yang X, Lin ClSK, et al. Biotechnological Production of Organic Acids from Renewable Resources. In: Wagemann K, Tippkötter N, editors. Biorefineries. Cham: Springer; 2019. pp. 373–410. https://doi.org/10.1007/10_2016_73
  15. Awasthi D, Wang L, Rhee MS, Wang Q, Chauliac D, Ingram LO, et al. Metabolic engineering of Bacillus subtilis for production of D-lactic acid. Biotechnology and Bioengineering. 2018;115(2):453–460. https://doi.org/10.1002/bit.26472
  16. Liu P, Zheng Z, Xu Q, Qian Z, Liu J, Ouyang J. Valorization of dairy waste for enhanced D-lactic acid production at low cost. Process Biochemistry. 2018;71:18–22. https://doi.org/10.1016/j.procbio.2018.05.014
  17. Sahoo TK, Jayaraman G. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of d-lactic acid from whey permeate. Applied Microbiology and Biotechnology. 2019;103:5653–5662. https://doi.org/10.1007/s00253-019-09819-7
  18. Ziadi M, M’Hir S, Aydi A, Hamdi M. Bioreactor Scale-Up and Kinetic Modeling of Lactic Acid and Biomass Production by Enterococcus faecalis SLT13 during Batch Culture on Hydrolyzed Cheese Whey. Journal of Chemistry. 2020;2020:1236784. https://doi.org/10.1155/2020/1236784
  19. Carlozzi P, Giovannelli A, Traversi ML, Touloupakis E. Poly(3-hydroxybutyrate) bioproduction in a two-step sequential process using wastewater. Journal of Water Process Engineering. 2021;39:101700. https://doi.org/10.1016/j.jwpe.2020.101700
  20. Raho S, Carofiglio VE, Montemurro M, Miceli V, Centrone D, Stufano P, et al. Production of the Polyhydroxyalkanoate PHBV from Ricotta Cheese Exhausted Whey by Haloferax mediterranei Fermentation. Foods. 2020;9(10):1459. https://doi.org/10.3390/foods9101459
  21. Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology. 2017;37:24–38. https://doi.org/10.1016/j.nbt.2016.05.001
  22. Sampaio FC, de Faria JT, da Silvac MF, de Souza Oliveira RP, Converti A. Cheese whey permeate fermentation by Kluyveromyces lactis: a combined approach to wastewater treatment and bioethanol production. Environmental Technology. 2019;41(24):3210–3218. https://doi.org/10.1080/09593330.2019.1604813
  23. Beniwal A, Saini P, De S, Vij S. Harnessing the nutritional potential of concentrated whey for enhanced galactose flux in fermentative yeast. LWT. 2021;141:110840. https://doi.org/10.1016/j.lwt.2020.110840
  24. Tesfaw A, Oner ET, Assefa F. Evaluating crude whey for bioethanol production using non-Saccharomyces yeast, Kluyveromyces marxianus. Discover Applied Sciences. 2021;3:42. https://doi.org/10.1007/s42452-020-03996-1
  25. Putri D, Ulhidayati A, Musthofa IA, Wardani AK. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium. International Conference on Green Agro-industry and Bioeconomy. 2018;131:012052. https://doi.org/10.1088/1755-1315/131/1/012052
  26. Ryazantseva KA, Agarkova EYu, Fedotova OB. Continuous hydrolysis of milk proteins in membrane reactors of various configurations. Foods and Raw Materials. 2021;9(2):271–281. https://doi.org/10.21603/2308-4057-2021-2-271-281
  27. Abbas HM, Abd El-Gawad MAM, Kassem JM, Salama M. Application of fat replacers in dairy products: A review. Foods and Raw Materials. 2024;12(2):319–333. https://doi.org/10.21603/2308-4057-2024-2-612
  28. Khalifa I, Nie R, Ge Z, Li K, Li C. Understanding the shielding effects of whey protein on mulberry anthocyanins: Insights from multispectral and molecular modelling investigations. International Journal of Biological Macromolecules. 2018;119:116–124. https://doi.org/10.1016/j.ijbiomac.2018.07.117
  29. Prosekov AYu. The role of interphase surface phenomena in the production of dispersed products with foam structure (revive). Storage And Processing of Farm Products. 2001;(8):24–27. (In Russ.). https://elibrary.ru/yrxyby
  30. Braber NLV, Giorgio LD, Aminahuel CA, Vergara LID, Costa AOM, Montenegro MA, et al. Antifungal whey protein films activated with low quantities of water soluble chitosan. Food Hydrocolloids. 2021;110:106156. https://doi.org/10.1016/j.foodhyd.2020.106156
  31. Çakmak H, Özselek Y, Turan OY, Fıratlıgil E, Karbancioğlu-Güler F. Whey protein isolate edible films incorporated with essential oils: Antimicrobial activity and barrier properties. Polymer Degradation and Stability. 2020;179:109285. https://doi.org/10.1016/j.polymdegradstab.2020.109285
  32. Guimarães A, Ramos Ó, Cerqueira M, Venâncio A, Abrunhosa L. Active Whey Protein Edible Films and Coatings Incorporating Lactobacillus buchneri for Penicillium nordicum Control in Cheese. Food and Bioprocess Technology. 2020;13:1074–1086. https://doi.org/10.1007/s11947-020-02465-2
  33. Kalkan S, Erginkaya Z. Impact of whey protein isolate coatings containing different antimicrobial agents on sliced bologna-type sausage during refrigerated storage. Food Science and Technology. 2020;40:136–145. https://doi.org/10.1590/fst.05119
  34. Muley AB, Singhal RS. Extension of postharvest shelf life of strawberries (Fragaria ananassa) using a coating of chitosan-whey protein isolate conjugate. Food Chemistry. 2020;329:127213. https://doi.org/10.1016/j.foodchem.2020.127213
  35. Sogut E, Balqis AMI, Hanani ZAN, Seydim AC. The properties of κ-carrageenan and whey protein isolate blended films containing pomegranate seed oil. Polymer Testing. 2019;77:105886. https://doi.org/10.1016/j.polymertesting.2019.05.002
  36. Sargin BV, Bobkov GV, Pavlov SA. Method for preparing extracts of herbal raw material by water-in-oil extraction in natural extractants. Russia patent RU 2491947C2. 2011.
  37. Prosekov AYu, Dyshliuk LS, Milenteva IS, Asiakina LK, Fedorova AM, Loseva AI. Method for obtaining a biologically active additive based on whey and plant extract. Russia patent RU 2792775C1. 2022.
  38. Kaledina MV, Fedosova AN, Shramko MI, Salatkova NP, Martinova IA. Fermented milk drinks with herbal extracts on the basis of whey. Newsletter of North-Caucasus Federal University. 2013;(6):92–96. (In Russ.). https://elibrary.ru/RXANWJ
  39. Khalanskaya DM, Lodygin AD, Kurchenko VP. Effect of technological factors on the extraction of biologically active substances from plant raw materials. Proceedings of the International Scientific and Practical Conference on Molecular Genetics and Biotechnology in Obtaining and Using Synthetic and Natural Biologically Active Substances;2017; Stavropol. Stavropol: North-Caucasus Federal University; 2017. р. 290–293. (In Russ.). https://elibrary.ru/ZISHHT
  40. Ivanova SA, Milentyeva IS, Asyakina LK, Lukin AA, Kriger OV, Petrov AN. Biologically Active Substances of Siberian Medical Plants in Functional Wgey-Based Drinks. Food Processing: Techniques and Technology. 2019;49(1):14–22. (In Russ.). https://doi.org/10.21603/2074-9414-2019-1-14-22; https://elibrary.ru/XQHWBO
  41. Lodygin A, Khalanskaya D, Evdokimov I, Kurchenko V, Lodygina S, Kapustin M, et al. Application of whey for plant biologically active substances extraction. Journal of Hygienic Engineering and Design. 2024;46:73–79. https://keypublishing.org/jhed/wp-content/uploads/2024/03/03.-Full-paper-Alexey-Lodygin.pdf
  42. Nesterenko PG. Production of condensed concentrates based on whey. Izvestiya Vuzov. Food Technology. 1992;(2):5–10. (In Russ.). https://elibrary.ru/QCAAUV
  43. Bryukhachev EN, Zaushintsena AV, Fotina NV, Skomorokhov AV. The development of production technology of functional drink based on milk whey. Bulletin of KSAU. 2020;(8):144–152. (In Russ.). https://doi.org/10.36718/1819-4036-2020-8-144-152; https://elibrary.ru/IMZYJF
  44. Trineeva OV, Safonova II, Safonova EF, Slivkin AI. Definition of flavonoides and research of influence of storage conditions on their contents in hippophaes fruits a TLC method. Sorption and Chromatography Processes. 2012;12(5):806-813. (In Russ.). https://elibrary.ru/PIWVSZ
  45. Danilchuk TN, Novosad YuG, Sidorova ES. Antioxidant activity of milk whey. Food Industry. 2022;(3):39–42. https://doi.org/10.52653/PPI.2022.3.3.010; https://elibrary.ru/OKQKY
  46. Poništ J, Dubšíková V, Schwarz M, Samešová D. Methods of processing whey waste from dairies. A review. Environment Protection Engineering. 2021;47(4):67–84. http://doi.org/10.37190/epe210405
Как цитировать?
Подбор параметров экстракции биоактивных веществ из лекарственных растений с применением молочной сыворотки / Н. С. Величкович [и др.] // Техника и технология пищевых производств. 2024. Т. 54. № 3. С. 633–644. https://doi.org/10.21603/2074-9414-2024-3-2532
О журнале