ISSN 2074-9414 (Печать),
ISSN 2313-1748 (Онлайн)

Химический состав эфирных масел кумквата (Citrus fortunella) и мутантов

Аннотация
Кумкват (Citrus japonica или Fortunella japonica) – растение семейства цитрусовых, плоды которого широко применяются в пищевой промышленности, однако его листья и кора, как правило, выбрасываются в качестве отходов. Цель данной работы – изучить химический состав эфирных масел, полученных из плодов и листьев кумквата основного вида и шести мутантов (Институт растениеводства «Mersin Alata», Турция).
Эфирные масла плодов и листьев кумквата получали методом гидродистилляции. Компонентный анализ эфирных масел проводилли при помощи газовой хромато-масс-спектрометрии (ГХ-МС).
В эфирном масле из плодов самым распространенным компонентом оказался лимонен (69,9–94,4 %); в эфирном масле из листьев – элемол (13,2–14,8 %), ß-эудесмол (9,3–11,0 %), α-гвайол (8,5–10,8 %), спатуленол (8,1–10,5 %) и алисмол (6,5–7,9 %). Согласно полученным результатам, эфирное масло может производиться как побочный продукт из листьев и плодов C. fortunella.
Эфирные масла плодов и листьев кумквата содержат большое количество химических компонентов с разным уровнем биологической активности, что делает возможным их использование в качестве источника растительного сырья в различных областях промышленности, таких как медицина, парфюмерия или производство косметики.
Ключевые слова
Кумкват, Citrus fortunella, эфирные масла, лимонен, элемол, ß-эудесмол, α-гвайол, спатуленол, алисмол
ФИНАНСИРОВАНИЕ
Исследование было выполнено при финансовой поддержке университета Инёню, Турция (BAPB, грант № TYL-2018-1108).
СПИСОК ЛИТЕРАТУРЫ
  1. Cho EC, Kim K. A comprehensive review of biochemical factors in herbs and their constituent compounds in experimental studies on alopecia. Journal of Ethnopharmacology. 2020;258:112907. https://doi.org/10.1016/j.jep.2020.112907
  2. Motti R. Wild plants used as herbs and spices in Italy: An ethnobotanical review. Plants. 2021;10:563. https://doi.org/ 10.3390/plants10030563
  3. Balkrishna A, Sharma N, Srivastava D, Kukreti A, Srivastava S, et al. Exploring the safety, efficacy, and bioactivity of herbal medicines: Bridging traditional wisdom and modern science in healthcare. Future Integrative Medicine. 2024;3(1):35–49. https://doi.org/10.14218/FIM.2023.00086.
  4. Raynor DK, Dickinson R, Knapp P, Long AF, Nicolson DJ. Buyer beware? Does the information provided with herbal products available over the counter enable safe use? BMC Medicine. 2011;9:94. https://doi.org/10.1186/1741-7015-9-94
  5. Vaou N, Stavropoulou E, Voidarou CC. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics. 2022;11(8):1014. https://doi.org/10.3390/antibiotics11081014
  6. Perez SM. Profile Physical and phenolic-chemical of kumquat influenced by the environment analyzed in Fresh. Journal of Ecological Engineering. 2022;23(2):196–203. https://doi.org/10.12911/22998993/144474
  7. Pawełczyk A, Żwawiak J, Zaprutko L. Kumquat fruits as an important source of food ingredients and utility compounds. Food Reviews International. 2021;39(2):875–895. https://doi.org/10.1080/87559129.2021.1928179
  8. Ziogas V, Ganos C, Graikou K, Cheilari A, Chinou I. Chemical analyses of volatiles from kumquat species grown in Greece–A study of antimicrobial activity. Horticulturae. 2024;10(2):131. https://doi.org/10.3390/horticulturae10020131
  9. Peng L-W, Sheu M-J, Lin L-Y, Wu C-T, Chiang H-M, et al. Effect of heat treatments on the essential oils of kumquat (Fortunella margarita Swingle). Food Chemistry. 2013;136(2):532. https://doi.org/10.1016/j.foodchem.2012.08.014
  10. Yıldız Turgut D, Topuz A. Bioactive compounds and biological activities of kumquat (Fortunella spp.). Turkish Journal of Agriculture – Food Science and Technology. 2019;7(10):1581–1588. https://doi.org/10.24925/turjaf.v7i10.1581- 1588.2628
  11. Li X, Meenu M, Xu B. Recent development in bioactive compounds and health benefits of kumquat fruits. Food Reviews International. 2022;39(7):4312–4332. https://doi.org/10.1080/87559129.2021.2023818
  12. Love K, Bowen R, Fleming K. Twelve fruits with potential value-added and culinary uses. Honolulu (HI): University of Hawaii. 2007. 58 p. https://hdl.handle.net/10125/2340
  13. de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, et al. Essential oils: Chemistry and pharmacological activities. Biomolecules. 2023;1;13(7):1144. https://doi.org/10.3390/biom13071144
  14. Lin X, Cao S, Sun J, Lu D, Zhong B, et al. The chemical compositions, and antibacterial and antioxidant activities of four types of citrus essential oils. Molecules. 2021;26(11):3412. https://doi.org/10.3390/molecules26113412
  15. Soni S, Parekh MY, Jacob JA, Lobo DE. Kumquat essential oil decreases proliferation and activates JNK signaling and apoptosis in HT-1080 fibrosarcoma cells. Molecular and Cellular Biochemistry. 2022;477:445–453. https://doi.org/10.1007/ s11010-021-04291-2
  16. Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rumata NR, et al. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry. 2022;13:100217. https://doi.org/10.1016/j.fochx.2022.100217
  17. Tan S, Li M, Ding X, Fan S, Guo L, et al. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 Mice. PLOS ONE. 2015;9(4):e93510. https://doi.org/10.1371/journal.pone.0093510
  18. Zhang H, Xie Y, Liu C, Chen S, Hu S, et al. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chemistry. 2017;230:316–326. https://doi.org/10.1016/j.foodchem.2017.03.040
  19. Zeng Z, Mao Z, Liu Y, Chen M, Xu Z, et al. Functional substances and therapeutic potential of kumquat essential oil. Trends in Food Science and Technology. 2023;138:272–283. https://doi.org/10.1016/j.tifs.2023.06.003
  20. Erasto P, Viljoen AM. Limonene – A review: biosynthetic, ecological and pharmacological relevance. Natural Product Communications. 2008;3(7):1193–1202. https://doi.org/10.1177/1934578X0800300728
  21. Liu X, Liu B, Jiang D, Zhu S, Shen W, et al. The accumulation and composition of essential oil in kumquat peel. Scientia Horticulturae. 2019;252(27):121–129. https://doi.org/10.1016/j.scienta.2019.03.042
  22. Ravichandran C, Badgujar PC, Gundev P, Upadhyay A. Review of toxicological assessment of d-limonene, a food and cosmetic additive. Food and Chemical Toxicology. 2018;12:668–680. https://doi.org/10.1016/j.fct.2018.07.052
  23. Lin H, Li Z, Sun Y, Zhang Y, Wang S, et al. D-Limonene: Promising and sustainable natural bioactive compound. Applied Sciences. 2024;14(11):4605. https://doi.org/10.3390/app14114605
  24. Klimek-Szczykutowicz M, Szopa A, Ekiert H. Citrus limon (Lemon) Phenomenon-A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants. 2020;9(1):119. https://doi.org/10.3390/plants9010119
  25. Jongedijk E, Cankar K, Buchhaupt M, Schrader J, Bouwmeester H, et al. Biotechnological production of limonene in microorganisms. Applied Microbiology and Biotechnology. 2016;100(7):2927–2938. https://doi.org/10.1007/s00253- 016-7337-7
  26. Sun J. D-Limonene: Safety and clinical applications. Alternative medicine review: A journal of clinical therapeutic. 2007;12(3):259–264.
  27. Kim YW, Kim MJ, Chung BY, Bang du Y, Lim SK, et al. Safety evaluation and risk assessment of d-Limonene. Journal of Toxicology and Environmental Health, Part B. 2013;16(1):17–38. https://doi.org/10.1080/10937404.2013.769418
  28. Bacanlı M. Limonene and ursolic acid in the treatment of diabetes: Citrus phenolic limonene, triterpenoid ursolic acid, antioxidants and diabetes. In: Diabetes. Elsevier. Amsterdam 2020;275–283. https://doi.org/10.1016/B978-0-12-815776- 3.00027-9
  29. Trumble JT. Caveat emptor: Safety considerations for natural products sed in arthropod control. American Entomologist. 2002;48(1):7–13. https://doi.org/10.1093/ae/48.1.7
  30. Roberto D, Micucci P, Sebastian T, Graciela F, Anesini C. Antioxidant activity of limonene on normal murine lymphocytes: Relation to H2O2 modulation and cell proliferation. Basic and Clinical Pharmacology and Toxicology. 2010;106(1): 38–44. https://doi.org/10.1111/j.1742-7843.2009.00467.x
  31. Choi H-S. Characteristic odor components of kumquat (Fortunella japonica Swingle) peel oil. Journal of Agricultural and Food Chemistry. 2005;53(5):1642–1647. https://doi.org/10.1021/jf040324x
  32. Odimegwu JI, Odukoya O, Yadav RK, Chanotiya CS, Ogbonnia S, et al. A new source of elemol rich essential oil and existence of multicellular oil glands in leaves of the Dioscorea species. The scientific World Journal. 2013;2013:943598. https://doi.org/10.1155/2013/943598
  33. Acharya B, Chaijaroenkul W, Na-Bangchang K. Therapeutic potential and pharmacological activities of β-eudesmol. Chemical Biology & Drug Design. 2021;97(4):984–996. https://doi.org/10.1111/cbdd.13823
  34. Choudhary MI, Batool I, Atif M, Hussain S, Atta-ur-Rahman. Microbial transformation of (-)-guaiol and antibacterial activity of its transformed products. Journal of Natural Products. 2007;70(5):849–852. https://doi.org/10.1021/np068052a
  35. Mendes RF, Pinto NC, da Silva JM, da Silva JB, Hermisdorf RC, et al. The essential oil from the fruits of the Brazilian spice Xylopia sericea A. St.-Hil. presents expressive in-vitro antibacterial and antioxidant activity. The Journal of Pharmacy and Pharmacology. 2017;69(3):341–348. https://doi.org/10.1111/jphp.12698
  36. Liu T, Wang CJ, Xie HQ, Mu Q. Guaiol–a naturally occurring insecticidal sesquiterpene. Natural Product Communications. 2013;8(10):1353–1354. https://doi.org/10.1177/1934578X1300801001
  37. Yang X, Yang J, Gu X. (-)-Guaiol triggers immunogenic cell death and inhibits tumor growth in non-small cell lung cancer. Molecular and Cellular Biochemistry. 2023;478(7):1611–1620. https://doi.org/10.1007/s11010-022-04613-y
  38. Doorandishan M, Gholami M, Ebrahimi P, Jassbi AR. Spathulenol as the most abundant component of essential oil of Moluccella aucheri (Boiss.) Scheen. Natural Volatiles and Essential Oils. 2021;8(2):37–41. https://doi.org/10.37929/ nveo.817562
  39. Bendaoud H, Romdhane M, Souchard JP, Cazaux S, Bouajila J. Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. Journal of Food Science. 2010; 75(6):466–472. https://doi.org/10.1111/j.1750-3841.2010.01711.x
  40. Ziaei A, Ramezani M, Wright L, Paetz C, Schneider B, et al. Identification of spathulenol in Salvia mirzayanii and the immunomodulatory effects. Phytotherapy Research. 2011;25(4):557–562. https://doi.org/10.1002/ptr.3289
  41. do Nascimento KF, Moreira FMF, Alencar Santos J, Leite Kassuya CA, Croda JHR, et al. Antioxidant, antiinflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. Journal of Ethnopharmacology. 2018;210:351–358. https://doi.org/10.1016/j.jep.2017.08.030
  42. Valdivieso-Ugarte M, Gomez-Llorente C, Plaza-Díaz J, Gil Á. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients. 2019;11(11):2786. https://doi.org/10.3390/nu11112786
  43. Cantrell CL, Klun JA, Bryson CT, Kobaisy M, Duke SO. Isolation and identification of mosquito bite deterrent terpenoids from leaves of American (Callicarpa americana) and Japanese (Callicarpa japonica) beautyberry. Journal of Agricultural and Food Chemistry. 2005;53(15):5948–5953. https://doi.org/10.1021/jf0509308
  44. Oshima Y, Iwakawa T, Hikino H. Alismol and alismoxide, sesquiterpenoids of Alisma Rhizomes. Phytochemistry. 1983;22(1):183–185. https://doi.org/10.1016/S0031-9422(00)80084-9
  45. Kubo M, Matsuda H, Tomohiro N, Yoshikawa M. Studies on Alismatis rhizoma. I. Anti-allergic effects of methanol extract and six terpene components from Alismatis rhizoma (Dried rhizome of Alisma orientale). Biological and Pharmaceutical Bulletin. 1997;20(5):511–516. https://doi.org/10.1248/bpb.20.511
  46. Makino B, Kobayashi M, Kimura K, Ishimatsu M, Sakakibara I, et al. Local variation in the content of angiotensin II and arginine vasopressin receptor antagonistic terpenoids in the rhizomes of Alisma orientale. Planta Medica. 2002;68(3): 226–231. https://doi.org/10.1055/s-2002-23129
  47. Matsuda H, Yamahara J, Kobayashi G, Fujimura H, Kurahashi K, et al. Effect of alismol on adrenergic mechanism in isolated rabbit ear artery. Japanese Journal of Pharmacology. 1988;46(4):331–335. https://doi.org/10.1254/jjp.46.331
  48. Feng H, Jiang Y, Cao H, Shu Y, Yang X, et al. Chemical characteristics of the sesquiterpenes and diterpenes from Lauraceae family and their multifaceted health benefits: A review. Heliyon. 2022;8(12):e12013. https://doi.org/10.1016/ j.heliyon.2022.e12013
  49. Li C, Yan W, Cui E, Changji Z. Anti-bacterial effect of phytoconstituents isolated from Alimatis rhizoma. Applied Biological Chemistry. 2021;64:9. https://doi.org/10.1186/s13765-020-00583-1
Как цитировать?
Кючукбай Ф., Бююккормаз Ч., Озек Г., Озек Т. Химический состав эфирных масел кумквата (Citrus fortunella) и мутантов. Техника и технология пищевых производств. 2025. Т. 55. № 1. С. 29–44. (На англ.) https://doi.org/10.21603/2074-9414-2025-1-2553 
О журнале