ISSN 2074-9414 (Печать),
ISSN 2313-1748 (Онлайн)

Микроводоросли Scenedesmus как источник пигментов и других биологически активных метаболитов: перспективы и проблемы применения

Аннотация
Пищевые красители улучшают органолептические свойства продуктов, что повышает их привлекательность для потребите- лей. Однако использование синтетических красителей ассоциируется с потенциальными рисками для здоровья. В последние годы внимание исследователей привлекают натуральные пигменты микроводорослей (Scenedesmus), которые обеспечивают интенсивную окраску и обладают выраженной биологической активностью, включая хлорофиллы и каротиноиды. Цель обзора – систематизировать актуальную информацию о пигментном составе микроводорослей Scenedesmus; рассмотреть современные стратегии культивирования, обеспечивающие эффективный биосинтез их клетками пигментов; оценить перспективность использования пигментов Scenedesmus в качестве функциональных компонентов в пищевой и нутрицевтической промышленности; проанализировать текущие ограничения, препятствующие масштабированию производства пигментов на основе микроводорослей. Объекты исследования – научные публикации, посвященные изучению пигментов микроводорослей Scenedesmus, их биоактивных свойств и / или практического применения. Поиск научной литературы проводился за период 2015–2025 гг. с использованием международных баз данных: ScienceDirect (Scopus), Springer Link, MDPI и Google Scholar. Проведен отбор публикаций, извлечение и анализ данных. Результаты исследования показывают, что микроводоросли Scenedesmus накапливают значительное количество хлорофиллов (до 30,8 мг/г) и каротиноидов (до 98,0 мг/г). Каротиноидный профиль Scenedesmus характеризуется разнообразием соединений, среди которых коммерческое значение имеют лютеин (содержание до 10,7 мг/г), β-каротин (до 19,0 мг/г) и астаксантин (до 23,8 мг/г). Современные исследования демонстрируют широкий спектр биологической активности каротиноидных экстрактов Scenedesmus, включая противомикробное, антипролиферативное, гиполипидемическое и противодиабетическое действие. Благодаря этому пигменты Scenedesmus перспективны для применения в производстве функциональных продуктов питания и нутрицевтиков. Также рассмотрены различные стратегии культивирования, направленные на увеличение выхода пигментов в биомассе Scenedesmus. Выявлен ряд факторов, препятствующих успешной коммерциализации Scenedesmus для получения пигментов: значительная вариабельность состава пигментов в зависимости от штамма и условий культивирования, технические и экономические сложности масштабирования процессов культивирования и экстракции пигментов. Дальнейшие исследования необходимо фокусировать на комплексной оценке безопасности и биодоступности пигментов Scenedesmus, а также на разработке и оптимизации технологий промышленного культивирования Scenedesmus и эффективного извлечения целевых пигментов из биомассы.
Ключевые слова
Микроводоросли, Scenedesmus, натуральные красители, биоактивные соединения, антиоксиданты, каротиноиды, хлорофилл, ксантофиллы, лютеин, β-каротин
СПИСОК ЛИТЕРАТУРЫ
  1. Rodríguez-Mena A, Ochoa-Martínez LA, González-Herrera SM, Rutiaga-Quiñones OM, González-Laredo RF, et al. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chemistry. 2023;398:133908. https://doi.org/10.1016/j.foodchem.2022.133908
  2. Cao K, Cui Y, Sun F, Zhang H, Fan J, et al. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnology Advances. 2023;68:108236. https://doi.org/10.1016/j.biotechadv.2023.108236
  3. Gao L, Qin Y, Zhou X, Jin W, He Z, et al. Microalgae as future food: Rich nutrients, safety, production costs and environmental effects. Science of The Total Environment. 2024;927:172167. https://doi.org/10.1016/j.scitotenv.2024.172167
  4. Sun H, Wang Y, He Y, Liu B, Mou H, et al. Microalgae-derived pigments for the food industry. Marine Drugs. 2023;(2):82. https://doi.org/10.3390/md21020082
  5. Thomsen PT, Nielsen SR, Borodina I. Recent advances in engineering microorganisms for the production of natural food colorants. Current Opinion in Chemical Biology. 2024;81:102477. https://doi.org/10.1016/j.cbpa.2024.102477
  6. Li N, Wang Q, Zhou J, Li S, Liu J, et al. Insight into the progress on natural dyes: Sources, structural features, health effects, challenges, and potential. Molecules. 2022;27(10):3291. https://doi.org/10.3390/molecules27103291
  7. Bouyahya A, El Omari N, Hakkur M, El Hachlafi N, Charfi S, et al. Sources, health benefits, and biological properties of zeaxanthin. Trends in Food Science & Technology. 2021;118(Part A):519–538. https://doi.org/10.1016/j.tifs.2021.10.017
  8. Andreeva A, Budenkova E, Babich O, Sukhikh S, Ulrikh E, et al. Production, purification, and study of the amino acid composition of microalgae proteins. Molecules. 2021;26(9):2767. https://doi.org/10.3390/molecules26092767
  9. Andreeva A, Budenkova E, Babich O, Sukhikh S, Dolganyuk V, et al. Influence of carbohydrate additives on the growth rate of microalgae biomass with an increased carbohydrate content. Marine Drugs. 2021;19(7):381. https://doi.org/10.3390/md19070381
  10. Dolganyuk V, Andreeva A, Budenkova E, Sukhikh S, Babich O, et al. Study of morphological features and determination of the fatty acid composition of the microalgae lipid complex. Biomolecules. 2020;10(11):1571. https://doi.org/10.3390/biom10111571
  11. Sukhikh S, Ivanova S, Dolganyuk V, Pilevinova I, Prosekov A, et al. Evaluation of the prospects for the use of microalgae in functional bread production. Applied Sciences. 2022;12(24):12563. https://doi.org/10.3390/app122412563
  12. Shevelyuhina A, Babich O, Sukhikh S, Ivanova S, Kashirskih E, et al. Antioxidant and antimicrobial activity of microalgae of the Filinskaya Bay (Baltic Sea). Plants. 2022;11(17):2264. https://doi.org/10.3390/plants11172264
  13. Sukhikh S, Prosekov A, Ivanova S, Maslennikov P, Andreeva A, et al. Identification of metabolites with antibacterial activities by analyzing the FTIR spectra of microalgae. Life. 2022;12(9):1395. https://doi.org/10.3390/life12091395
  14. Dolganyuk V, Andreeva A, Sukhikh S, Kashirskikh E, Prosekov A, et al. Study of the physicochemical and biological properties of the lipid complex of marine microalgae isolated from the coastal areas of the eastern water area of the Baltic Sea. Molecules. 2022;27(18):5871. https://doi.org/10.3390/molecules27185871
  15. Srivastava A, Kalwani M, Chakdar H, Pabbi S, Shukla P. Biosynthesis and biotechnological interventions for commercial production of microalgal pigments: A review. Bioresource Technology. 2022;352:127071. https://doi.org/10.1016/j.biortech.2022.127071
  16. Долганюк В. Ф., Ульрих Е. В., Сухих С. А., Каширских Е. В., Кремлева О. Е. и др. Скрининг и характеристика антиоксидантных свойств психрофильных микроводорослей и цианобактерий Балтийского моря. Техника и технология пищевых производств. 2024. Т. 54. № 2. С. 212–221. https://doi.org/10.21603/2074-9414-2024-2-2501
  17. Kumar S, Kumar R, Diksha, Kumari A, Panwar A. Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. Journal of Basic Microbiology. 2022;62(9):1064–1082. https://doi.org/10.1002/jobm.202100391
  18. Mutaf-Kılıc T, Demir A, Elibol M, Oncel SS. Microalgae pigments as a sustainable approach to textile dyeing: A critical review. Algal Research. 2023;76:103291. https://doi.org/10.1016/j.algal.2023.103291
  19. Razzak SA. Comprehensive overview of microalgae-derived carotenoids and their applications in diverse industries. Algal Research. 2024;78:103422. https://doi.org/10.1016/j.algal.2024.103422
  20. Chan SS, Lee SY, Ling TC, Chae KJ, Srinuanpan S, et al. Unlocking the potential of food waste as a nutrient goldmine for microalgae cultivation: A review. Journal of Cleaner Production. 2025;492:144753. https://doi.org/10.1016/j.jclepro.2025.144753
  21. Rajamanickam R, Selvasembian R. Mechanistic insights into the potential application of Scenedesmus strains towards the elimination of antibiotics from wastewater. Bioresource Technology. 2024;410:131289. https://doi.org/10.1016/j.biortech.2024.131289
  22. Goshtasbi H, Okolodkov YB, Movafeghi A, Awale S, Safary A, et al. Harnessing microalgae as sustainable cellular factories for biopharmaceutical production. Algal Research. 2023;74:103237. https://doi.org/10.1016/j.algal.2023.103237
  23. Singh RP, Yadav P, Kumar A, Hashem A, Al-Arjani A-BА, et al. Physiological and biochemical responses of bicarbonate supplementation on biomass and lipid content of green algae Scenedesmus sp. BHU1 isolated from wastewater for renewable biofuel feedstock. Frontiers in Microbiology. 2022;13:839800. https://doi.org/10.3389/fmicb.2022.839800
  24. Khatiwada JR, Madsen C, Warwick C, Shrestha S, Chio C, et al. Interaction between polyethylene terephthalate (PET) microplastic and microalgae (Scenedesmus spp.): Effect on the growth, chlorophyll content, and hetero-aggregation. Environmental Advances. 2023;13:100399. https://doi.org/10.1016/j.envadv.2023.100399
  25. Sun D, Wu S, Li X, Ge B, Zhou C, et al. The structure, functions and potential medicinal effects of chlorophylls derived from microalgae. Marine Drugs. 2024;22(2):65. https://doi.org/10.3390/md22020065
  26. Vendruscolo RG, Deprá MC, Pinheiro PN, Furlan VJM, Barin JS, et al. Food potential of Scenedesmus obliquus biomasses obtained from photosynthetic cultivations associated with carbon dioxide mitigation. Food Research International. 2022;160:111590. https://doi.org/10.1016/j.foodres.2022.111590
  27. Xi Y, Yin L, Chi ZY, Luo G. Characterization and RNA-seq transcriptomic analysis of a Scenedesmus obliqnus mutant with enhanced photosynthesis efficiency and lipid productivity. Scientific Reports. 2021;11:11795. https://doi.org/10.1038/s41598-021-88954-6
  28. Zhang Y, Wu H, Yuan C, Li T, Li A. Growth, biochemical composition, and photosynthetic performance of Scenedesmus acuminatus during nitrogen starvation and resupply. Journal of Applied Phycology. 2019;31:2797–2809. https://doi.org/10.1007/s10811-019-01783-z
  29. Angeles R, Carvalho J, Hernández-Martínez I, Morales-Ibarría M, Fradinho JC, et al. Harnessing Nature's palette: Exploring photosynthetic pigments for sustainable biotechnology. New Biotechnology. 2025;85:84–102. https://doi.org/10.1016/j.nbt.2025.01.001
  30. Zafar J, Aqeel A, Shah FI, Ehsan N, Gohar UF, et al. Biochemical and immunological implications of lutein and zeaxanthin. International Journal of Molecular Sciences. 2021;22(20):10910. https://doi.org/10.3390/ijms222010910
  31. Bas TG. Bioactivity and bioavailability of carotenoids applied in human health: Technological advances and innovation. International Journal of Molecular Sciences. 2024;25(14):7603. https://doi.org/10.3390/ijms25147603
  32. Su Y, Chen F, Chen J, Wang M. An overview of potential cardioprotective benefits of xanthophylls in atherosclerosis: An evidence-based review. Food Science and Human Wellness. 2024;13(4):1739–1755. https://doi.org/10.26599/FSHW.2022.9250147
  33. Xie Y, Xiong X, Chen S. Challenges and potential in increasing lutein content in microalgae. Microorganisms. 2021;9(5):1068. https://doi.org/10.3390/microorganisms9051068
  34. Vendruscolo RG, Fernandes AS, Fagundes MB, Zepka LQ, de Menezes CR, et al. Development of a new method for simultaneous extraction of chlorophylls and carotenoids from microalgal biomass. Journal of Applied Phycology. 2021;33:1987–1997. https://doi.org/10.1007/s10811-021-02470-8
  35. Maroneze MM, Caballero-Guerrero B, Zepka LQ, Jacob-Lopes E, Perez-Galvez A, et al. Accomplished high-resolution metabolomic and molecular studies identify new carotenoid biosynthetic reactions in cyanobacteria. Journal of Agricultural and Food Chemistry. 2020;68(22):6212–6220. https://doi.org/10.1021/acs.jafc.0c01306
  36. León-Vaz A, León R, Vigara J, Funk C. Exploring Nordic microalgae as a potential novel source of antioxidant and bioactive compounds. New Biotechnology. 2023;73:1–8. https://doi.org/10.1016/j.nbt.2022.12.001
  37. Fernandes AS, Petry FC, Mercadante AZ, Jacob-Lopes E, Zepka LQ. HPLC-PDA-MS/MS as a strategy to characterize and quantify natural pigments from microalgae. Current Research in Food Science. 2020;3:100–112. https://doi.org/10.1016/j.crfs.2020.03.009
  38. Kona R, Pallerla P, Addipilli R, Sripadi P, Mohan SV. Lutein and β-carotene biosynthesis in Scenedesmus sp. SVMIICT1 through differential light intensities. Bioresource Technology. 2021;341:125814. https://doi.org/10.1016/j.biortech.2021.125814
  39. Lakshmidevi R, Gandhi NN, Muthukumar K. Enhanced biomass and lutein production by mixotrophic cultivation of Scenedesmus sp. using crude glycerol in an airlift photobioreactor. Biochemical Engineering Journal. 2020;161:107684. https://doi.org/10.1016/j.bej.2020.107684
  40. Minhas AK, Barrow CJ, Hodgson P, Adholeya A. Microalga Scenedesmus bijugus: Biomass, lipid profile, and carotenoids production in vitro. Biomass and Bioenergy. 2020;142:105749. https://doi.org/10.1016/j.biombioe.2020.105749
  41. Koh HG, Jeong YT, Lee B, Chang YK. Light stress after heterotrophic cultivation enhances lutein and biofuel production from a novel algal strain Scenedesmus obliquus ABC-009. Journal of Microbiology and Biotechnology. 2022;32(3):378–386. https://doi.org/10.4014/jmb.2108.08021
  42. Fernandes AS, Caetano PA, Jacob-Lopes E, Zepka LQ, de Rosso VV. Alternative green solvents associated with ultrasound-assisted extraction: A green chemistry approach for the extraction of carotenoids and chlorophylls from microalgae. Food Chemistry. 2024;455:139939. https://doi.org/10.1016/j.foodchem.2024.139939
  43. Rajput A, Singh DP, Khattar JS, Swatch GK, Singh Y. Evaluation of growth and carotenoid production by a green microalga Scenedesmus quadricauda PUMCC 4.1.40. under optimized culture conditions. Journal of Basic Microbiology. 2022;62(9):1156–1166. https://doi.org/10.1002/jobm.202100285
  44. Elloumi W, Jebali A, Maalej A, Chamkha M, Sayadi S. Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus sp. Biomolecules. 2020;10(11):1515. https://doi.org/10.3390/biom10111515
  45. Yuan S, Ye S, Yang S, Luo G. Purification of potato wastewater and production of byproducts using microalgae Scenedesmus and Desmodesmus. Journal of Water Process Engineering. 2021;43:102237. https://doi.org/10.1016/j.jwpe.2021.102237
  46. Li Z, Gao X, Bao J, Li S, Wang X, et al. Evaluation of growth and antioxidant responses of freshwater microalgae Chlorella sorokiniana and Scenedesmus dimorphus under exposure of moxifloxacin. Science of the Total Environment. 2023;858(Part 1):159788. https://doi.org/10.1016/j.scitotenv.2022.159788
  47. Maru M, Zewge F, Kifle D, Sahle-Demissie E. Biodesalination of brackish water coupled with lipid production using native Scenedesmus sp. isolated from a saline lake in Ethiopia, Lake Basaka. Desalination and Water Treatment. 2022;266:39–48. https://doi.org/10.5004/dwt.2022.28618
  48. Pandey A, Srivastava S, Kumar S. Carbon dioxide fixation and lipid storage of Scenedesmus sp. ASK22: A sustainable approach for biofuel production and waste remediation. Journal of Environmental Management. 2023;332:117350. https://doi.org/10.1016/j.jenvman.2023.117350
  49. Kadri MS, Singhania RR, Anisha GS, Gohil N, Singh V, et al. Microalgal lutein: Advancements in production, extraction, market potential, and applications. Bioresource Technology. 2023;389:129808. https://doi.org/10.1016/j.biortech.2023.129808
  50. An M, Gao L, Zhao W, Chen W, Li M. Effects of nitrogen forms and supply mode on lipid production of microalga Scenedesmus obliquus. Energies. 2020;13(3):697. https://doi.org/10.3390/en13030697
  51. Erdoğan A, Karataş AB, Demir D, Demirel Z, Aktürk M, et al. Comprehensive analysis of lutein and loroxanthin in Scenedesmus obliquus: From quantification to isolation. Molecules. 2024;29(6):1228. https://doi.org/10.3390/molecules29061228
  52. Corrêa PS, Freitas MM, Caetano NS. High-value compounds in three freshwater green microalgae using nitrogen as an abiotic stressor: A study of the antioxidant potential of ethanolic extracts. Algal Research. 2025;86:103964. https://doi.org/10.1016/j.algal.2025.103964
  53. Unni AC, Karunakaran K. Therapeutic potential of microalga Scenedesmus vacuolatus: In vitro evaluation of antioxidant and anticancer activities. Thalassas: An International Journal of Marine Sciences. 2025;41(1):53. https://doi.org/10.1007/s41208-025-00809-3
  54. Lin Y-S, Yuwono W, Wang H-Y. Lipid induction in Scenedesmus abundans GH-D11 by reusing the volatile fatty acids in the effluent of dark anaerobic fermentation of biohydrogen. Applied Biochemistry and Biotechnology. 2020;191:258–272. https://doi.org/10.1007/s12010-020-03294-x
  55. Cheng J, Fan W, Zheng L. Development of a mixotrophic cultivation strategy for simultaneous improvement of biomass and photosynthetic efficiency in freshwater microalga Scenedesmus obliquus by adding appropriate concentration of sodium acetate. Biochemical Engineering Journal. 2021;176:108177. https://doi.org/10.1016/j.bej.2021.108177
  56. Vinitha V, Meignanalakshmi S, Tirumurugaan KG, Sarathchandra G, Sundaram SM. Enhanced lipid production and analysis of properties of biodiesel produced from freshwater microalgae Scenedesmus obtusus ON089666.1. Bioresource Technology Reports. 2023;21:101286. https://doi.org/10.1016/j.biteb.2022.101286
  57. Gupta N, Khare P, Singh DP. Effect of spectral quality of light on growth and cell constituents of the wild-type (WT) and DCMU-tolerant strain of microalga Scenedesmus vacuolatus. Energy, Ecology and Environment. 2019;4:175–188. https://doi.org/10.1007/s40974-019-00124-7
  58. Pagels F, Amaro HM, Tavares TG, Casal S, Malcata FX, et al. Effects of irradiance of red and blue:red LEDs on Scenedesmus obliquus M2-1 optimization of biomass and high added-value compounds. Journal of Applied Phycology. 2021;33:1379–1388. https://doi.org/10.1007/s10811-021-02412-4
  59. Ren Y, Sun H, Deng J, Huang J, Chen F. Carotenoid production from microalgae: Biosynthesis, salinity responses and novel biotechnologies. Marine Drugs. 2021;19(12):713. https://doi.org/10.3390/md19120713
  60. Li J, Zhao X, Chang J-S, Miao X. A two-stage culture strategy for Scenedesmus sp. FSP3 for CO2 fixation and the simultaneous production of lutein under light and salt stress. Molecules. 2022;27(21):7497. https://doi.org/10.3390/molecules27217497
  61. Palanisami S. Blended wastewater as a source of nutrients and biosynthetic elicitors for microalgal biorefinery. Green Technologies and Sustainability. 2024;2(3):100098. https://doi.org/10.1016/j.grets.2024.100098
  62. Japar AS, Takriff MS, Yasin NHM. Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. Algal Research. 2021;53:102163. https://doi.org/10.1016/j.algal.2020.102163
  63. Devi ND, Sun X, Ding L, Goud VV, Hu B. Mixotrophic growth regime of novel strain Scenedesmus sp. DDVG I in municipal wastewater for concomitant bioremediation and valorization of biomass. Journal of Cleaner Production. 2022;365:132834. https://doi.org/10.1016/j.jclepro.2022.132834
  64. Phukan D, Kumar V, Singh A, Anand S. Accessing biochemical shifts in a novel Scenedesmus strain via acetaminophen detoxification: Experiment utilizing Box-Behnken optimization and isotherm analysis. International Biodeterioration & Biodegradation. 2024;193:105841. https://doi.org/10.1016/j.ibiod.2024.105841
  65. Wu G, Zhuang D, Chew KW, Ling TC, Khoo KS, et al. Current status and future trends in removal, control, and mitigation of algae food safety risks for human consumption. Molecules. 2022;27(19):6633. https://doi.org/10.3390/molecules27196633
  66. Chauhan DS, Sahoo L, Mohanty K. Maximize microalgal carbon dioxide utilization and lipid productivity by using toxic flue gas compounds as nutrient source. Bioresource Technology. 2022;348:126784. https://doi.org/10.1016/j.biortech.2022.126784
  67. Osundeko O, Dean AP, Davies H, Pittman JK. Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant and Cell Physiology. 2014;55(10):1848–1857. https://doi.org/10.1093/pcp/pcu113
  68. Yang Y, Zhao J, Song M, Yu J, Yu X, et al. Analysis of photosynthetic pigments pathway produced by CO2-toxicity-induced Scenedesmus obliquus. Science of the Total Environment. 2023;867:161309. https://doi.org/10.1016/j.scitotenv.2022.161309
  69. Bose A, Sharma S. Global regulatory trends and comparative insights: Nutraceuticals in the USA, India, and Europe. PharmaNutrition. 2025;31:100430. https://doi.org/10.1016/j.phanu.2025.100430
  70. Santhakumaran P, Ayyappan SM, Ray JG. Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their antibacterial, antioxidant and mineral content. Algal Research. 2020;47:101878. https://doi.org/10.1016/j.algal.2020.101878
  71. Fihri RF, Ez-Zoubi A, Mbarkiou L, Amar A, Farah A, et al. Antibacterial and antioxidant activities of Chlorella vulgaris and Scenedesmus incrassatulus using natural deep eutectic solvent under microwave assisted by ultrasound. Heliyon. 2024;10(15):e35071. https://doi.org/10.1016/j.heliyon.2024.e35071
  72. Zaharieva MM, Zheleva-Dimitrova D, Rusinova-Videva S, Ilieva Y, Brachkova A, et al. Antimicrobial and antioxidant potential of Scenedesmus obliquus microalgae in the context of integral biorefinery concept. Molecules. 2022;27(2):519. https://doi.org/10.3390/molecules27020519
  73. Reyna-Martinez R, Gomez-Flores R, López-Chuken U, Quintanilla-Licea R, Caballero-Hernandez D, et al. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México. PeerJ. 2018;6:e4358. https://doi.org/10.7717/peerj.4358
  74. Yadav K, Saxena A, Gupta M, Saha B, Sarwat M, et al. Comparing pharmacological potential of freshwater microalgae carotenoids towards antioxidant and anti-proliferative activity on liver cancer (HUH7) cell line. Applied Biochemistry and Biotechnology. 2024;196(4):2053–2066. https://doi.org/10.1007/s12010-023-04635-2
  75. Shaima AF, Yasin NHM, Ibrahim N, Takriff MS, Gunasekaran D, et al. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp.(UKM8) and Scenedesmus sp.(UKM9). Saudi Journal of Biological Sciences. 2022;29(2):1043–1052. https://doi.org/10.1016/j.sjbs.2021.09.069
  76. Limón P, Malheiro R, Casal S, Acién-Fernández FG, Fernández-Sevilla JM, et al. Improvement of stability and carotenoids fraction of virgin olive oils by addition of microalgae Scenedesmus almeriensis extracts. Food Chemistry. 2015;175:203–211. https://doi.org/10.1016/j.foodchem.2014.10.150
  77. da Silva ME, de Paula Correa K, Martins MA, da Matta SL, Martino HS, et al. Food safety, hypolipidemic and hypoglycemic activities, and in vivo protein quality of microalga Scenedesmus obliquus in Wistar rats. Journal of Functional Foods. 2020;65:103711. https://doi.org/10.1016/j.jff.2019.103711
  78. Hlaing SAA, Sadiq MB, Anal AK. Enhanced yield of Scenedesmus obliquus biomacromolecules through medium optimization and development of microalgae based functional chocolate. Journal of Food Science and Technology. 2020;57(3):1090–1099. https://doi.org/10.1007/s13197-019-04144-3
  79. do Nascimento TC, Pinheiro PN, Fernandes AS, Murador DC, Neves BV, et al. Bioaccessibility and intestinal uptake of carotenoids from microalgae Scenedesmus obliquus. LWT. 2021;140:110780. https://doi.org/10.1016/j.lwt.2020.110780
  80. Udayan A, Pandey AK, Sharma P, Sreekumar N, Kumar S. Emerging industrial applications of microalgae: Challenges and future perspectives. Systems Microbiology and Biomanufacturing. 2021;1(4):411–431. https://doi.org/10.1007/s43393-021-00038-8
  81. Çelekli A, Özbal B, Bozkurt H. Challenges in functional food products with the incorporation of some microalgae. Foods. 2024;13(5):725. https://doi.org/10.3390/foods13050725
  82. Balasubramaniam V, Gunasegavan RD-N, Mustar S, Lee JC, Mohd Noh MF. Isolation of industrial important bioactive compounds from microalgae. Molecules. 2021;26(4):943. https://doi.org/10.3390/molecules26040943
  83. Zhang H, Zhao L, Chen Y, Zhu M, Xu Q, et al. Trophic transition enhanced biomass and lipid production of the unicellular green alga Scenedesmus acuminatus. Frontiers in Bioengineering and Biotechnology. 2021;9:638726. https://doi.org/10.3389/fbioe.2021.638726
  84. Sharma P, Gujjala LKS, Varjani S, Kumar S. Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. Science of the Total Environment. 2022;813:152417. https://doi.org/10.1016/j.scitotenv.2021.152417
  85. Tang DYY, Khoo KS, Chew KW, Tao Y, Ho S-H, et al. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology. 2020;304:122997. https://doi.org/10.1016/j.biortech.2020.122997
  86. Silva M, Geada P, Pereira RN, Teixeira JA. Microalgae biomass–A source of sustainable dietary bioactive compounds towards improved health and well-being. Food Chemistry Advances. 2025;6:100926. https://doi.org/10.1016/j.focha.2025.100926
  87. Vieira MV, Pastrana LM, Fuciños P. Microalgae encapsulation systems for food, pharmaceutical and cosmetics applications. Marine Drugs. 2020;18(12):644. https://doi.org
Как цитировать?
О журнале