ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Contemporary Biological Methods of Mine Reclamation in the Kemerovo Region – Kuzbass

Abstract
Introduction. Coal mining is the main source of anthropogenic impact on the landscapes of the Kemerovo Region – Kuzbass. The current mine reclamation rate lags far behind the annual increase in disturbed lands. A reclamation fund can be a perfect solution to this relevant issue. The present research objective was to analyze and structure the available data on the anthropogenic impact of coal mining in Kuzbass. The article reviews new effic ient methods of reclamation and resoiling.
Study objects and methods. The study featured ten years of research publications that were registered in the PubMed database of the National Center for Biotechnology Information (USA), Elsevier (Scopus, ScienceDirect), the Web of Science, and the Russian Electronic Library (eLibrary.ru).
Results and discussion. The research revealed the following Kuzbass districts that experience the greatest mining impact: Novokuznetsk, Prokopyevsk, Kemerovo, Belovo, and Leninsk-Kuznetskiy. The authors also identified the most common pollutants associated with coal mining. Polycyclic aromatic hydrocarbons (PAHs) appeared to be the most dangerous pollutants: as waste coal burns, these substances cover considerable distances with the wind. Biodegradation seems to be the optimal solution because PAHs are known to be carcinogenic, and most mine tips are located near settlements. The article also features mine reclamation laws and introduces a list of plants with a high absorption capacity recommended for biological reclamation, as well as microorganisms and their consortia used for bioremediation.
Conclusion. The authors identified the most promising methods of mine reclamation in the Kemerovo region, i.e. bioremediation with pollutant-binding microbial consortia and plants.
Keywords
Coal dumps, coal mining, reclamation, phytoremediation, bioremediation, pollutants, polycyclic aromatic hydrocarbons, environmental pollution, mining industry
REFERENCES
  1. Tsivilev SE. Kuzbass 2035: National interests and strategic priorities of the regional development. Russian Journal of Industrial Economics. 2020;13(3):281–289. (In Russ.). https://doi.org/10.17073/2072-1633-2020-3-281-289.
  2. Zelenyy Kuzbass: kak uvelichitʹ tempy rekulʹtivatsii [Green Kuzbass: how to increase the rate of reclamation] [Internet]. [cited 2021 Aug 21]. Available from: URL: https://gazeta.a42.ru/lenta/projects/62513-zelyonyi-kuzbass-kak-uvelichit-tempy-rekultivacii.
  3. Naumov IV. The study of spatial imbalances in the processes of disruption and land reclamation in Russia. News of the Ural State Mining University. 2019;56(4):143–152. (In Russ.).
  4. Borzenkova AV, Sinʹkov LS. The financial assurance to guarantee remediationof the open-cast mining areas. Upravlenie ehkonomicheskimi sistemami: ehlektronnyy nauchnyy zhurnal [Management of economic systems: electronic scientific journal]. 2013;58(10). (In Russ.).
  5. Petrova TV, Korabel LYa. The analysis of possibility of using mechanisms of financial assurance for financing operations on recultivation. Mining informational and analytical bulletin (scientific and technical journal). 2015;(7):250–254. (In Russ.).
  6. Yakovleva AV. The concept of remediation fund formation at open-pit mining. Internet-zhurnal Naukovedenie [Science Studies Online Journal]. 2015;7(1). (In Russ.). https://doi.org/10.15862/33EVN115.
  7. Li W, Chen B, Ding X. Environment and reproductive health in China: challenges and opportunities Environ. Environmental Health Perspectives. 2012;120(5):184–185. https://doi.org/10.1289/ehp.1205117.
  8. Dominguez JJA, Bacosa HP, Chien M-F, Inoue C. Enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere of sudangrass (Sorghum × drummondii). Chemosphere. 2019;234:789–795. https://doi.org/10.1016/j.chemosphere.2019.05.290.
  9. Wolf K, Cyrys J, Harciníková T, Gu J, Kusch T, Hampel R, et al. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany. Science of the Total Environment. 2017;579:1531–1540. https://doi.org/10.1016/j.scitotenv.2016.11.160.
  10. Borah P, Kumar M, Devi P. Types of inorganic pollutants: metals/metalloids, acids, and organic forms. In: Devi P, Singh P, Kansal SK, editors. Inorganic pollutants in water. Elsevier; 2020. pp. 17–31. https://doi.org/10.1016/B978-0-12-818965-8.00002-0.
  11. Dixit R, Wasiullaha, Malaviya D, Pandiyan K, Singh UB, Sahu A, et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability. 2015;7(2):2189–2212. https://doi.org/10.3390/su7022189.
  12. Marki uglya [Coal grades] [Internet]. [cited 2021 Aug 22]. Available from: https://gruntovozov.ru/chasto-zadavayemiye-voprosy/vidyi-uglya/marki-uglya/#:~:text=.
  13. Gosudarstvennyy reestr obʺektov razmeshcheniya otkhodov [State register of waste disposal facilities] [Internet]. [cited 2021 Aug 21]. Available from: https://www.fcao.ru/groro?page=332.
  14. Avgushevich IV, Sidoruk EI, Bronovets TM. Standartnye metody ispytaniya ugley. Klassifikatsiya ugley [Standard test methods for coals. Coal classification]. Moscow: Reklama master; 2018. 574 p. (In Russ.).
  15. Zhuravleva EV, Mikhailova ES, Zhuravleva NV, Ismagilov ZR. Polycyclic aromatic hydrocarbons from coal in the objects of the environment. Chemistry for Sustainable Development. 2020;28(3):328–336. (In Russ.). https://doi.org/10.15372/KhUR2020237.
  16. Meyer W, Seiler T-B, Schwarzbauer J, Püttmann W, Hollert H, Achten C. Polar polycyclic aromatic compounds from different coal types show varying mutagenic potential, EROD induction and bioavailability depending on coal rank. Science of the Total Environment. 2014;494–495:320–328. https://doi.org/10.1016/j.scitotenv.2014.06.140.
  17. Stout SA, Uhler AD, McCarthy KJ, Emsbo-Mattingly S. Chemical fingerprinting of hydrocarbons. In: Murphy BL, Morrison RD, editors. Introduction to environmental forensics. San Diego: Academic Press; 2002. pp. 137–260.
  18. Khabibulina ER, Ismagilov ZR, Zhuravleva NV, Sozinov SA. Determination of PAH in coal of different metamorphism degrees from the Kuznetsk coal basin. Proceedings of the International Scientific and Practical Conference. 2015;2:268–271.
  19. Ahrens MJ, Morrisey DJ. Biological effects of unburnt coal in the marine environment. Oceanography and Marine Biology. 2005;43:69–122.
  20. Yahiya M, Miranda MTP. Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in the south west coast of Kerala, India. Materials Today: Proceedings. 2021;41:736–743. https://doi.org/10.1016/j.matpr.2020.07.440.
  21. Liu H, Yin H, Tang S, Wei K, Peng H, Lu G, et al. Effects of benzo [a] pyrene (BaP) on the composting and microbial community of sewage sludge. Chemosphere. 2019;222:517–526. https://doi.org/10.1016/j.chemosphere.2019.01.180.
  22. Yakovleva EV, Gabov DN, Beznosikov VA, Kondratenok BM. Accumulation of polycyclic aromatic hydrocarbons in soils and plants of the tundra zone under the impact of coal-mining industry. Eurasian Soil Science. 2016;49(11):1319–1328. https://doi.org/10.1134/S1064229316090143.
  23. Lankin AV, Kreslavski VD, Khudyakova AYu, Zharmukhamedov SK, Allakhverdiev SI. Effect of naphthalene on photosystem 2 photochemical activity of pea plants. Biochemistry. 2014;79(11):1216–1225. https://doi.org/10.1134/S0006297914110091.
  24. Hindersmann B, Achten C. Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs. Environmental Pollution. 2018;242:1217–1225. https://doi.org/10.1016/j.envpol.2018.08.014.
  25. Garcia-Martinez MJ, Ortega MF, Bolonio D, Llamas JF, Canoira L. Leaching of polycyclic aromatic hydrocarbons (PAHs) from coal dumps reclaimed with apple trees: a mechanistic insight. Environmental Geochemistry and Health. 2018;40(6):2695–2706. https://doi.org/10.1007/s10653-018-0133-9.
  26. Pies C, Hoffmann B, Petrowsky J, Yang Y, Ternes TA, Hofmann T. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere. 2008;72(10):1594–1601. https://doi.org/10.1016/j.chemosphere.2008.04.021.
  27. Ramzi A, Habeeb Rahman K, Gireeshkumar TR, Balachandran KK, Jacob C, Chandramohanakumar N. Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Cochin estuary, India. Marine Pollution Bulletin. 2017;144(2):1081–1087. https://doi.org/10.1016/j.marpolbul.2016.10.015.
  28. Drwal E, Rak A, Gregoraszczuk EL. Review: polycyclic aromatic hydrocarbons (PAHs) – action on placental function and health risks in future life of newborns. Toxicology. 2019;411:133–142. https://doi.org/10.1016/j.tox.2018.10.003.
  29. Chang Y, Siddens LK, Heine LK, Sampson DA, Yu Z, Fischer KA. Comparative mechanisms of PAH toxicity by benzo[a]pyrene and dibenzo[def,p]chrysene in primary human bronchial epithelial cells cultured at air-liquid interface. Toxicology and Applied Pharmacology. 2019;379. https://doi.org/10.1016/j.taap.2019.114644.
  30. Laumann S, Micić V, Kruge MA, Achten C, Sachsenhofer RF, Schwarzbauer J, et al. Variations in concentrations and compositions of polycyclic aromatic hydrocarbons (PAHs) in coals related to the coal rank and origin. Environmental Pollution. 2011;159(10):2690–2697. https://doi.org/10.1016/j.envpol.2011.05.032.
  31. Achten C, Hofmann T. Native polycyclic aromatic hydrocarbons (PAH) in coals – A hardly recognized source of environmental contamination. Science of the Total Environment. 2009;407(8):2461–2473. https://doi.org/10.1016/j.scitotenv.2008.12.008.
  32. Ismagilov ZR, Zhuravleva NV, Kerzhentsev MA, Yashnik SA, Matus EV, Podyacheva OYu, et al. Environmental issues in Kuznetsk coal basin. Scientific approaches and technologies to reduce environmental pollution. Chemistry for Sustainable Development. 2018;26(3):241–260. (In Russ.). https://doi.org/10.15372/KhUR20180302.
  33. Kuna-Gwozdziewicz P. Emission of polycyclic aromatic hydrocarbons from the exhalation zones of thermally active mine waste dumps. Journal of Sustainable Mining. 2013;12(1):7–12. https://doi.org/10.7424/jsm130103.
  34. Mukasa-Mugerwa TT, Dames JF, Rose PD. The role of a plant/fungal consortium in the degradation of bituminous hard coal. Biodegradation. 2011;22(1):129–141. https://doi.org/10.1007/s10532-010-9382-8.
  35. Nadudvari A, Kozielska B, Abramowicz A, Fabiańska M, Ciesielczuk J, Cabała J, et al. Heavy metal- and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland). Journal of Hazardous Materials. 2021;412. https://doi.org/10.1016/j.jhazmat.2021.125244.
  36. Pravila provedeniya rekulʹtivatsii i konservatsii zemelʹ [Rules for land reclamation and conservation] [Internet]. [cited 2021 Aug 22]. Available from: https://www.consultant.ru/document/cons_doc_LAW_302235/90e01d185047971fe921b2bb4ea2abe4389a57d5.
  37. Ufimtsev VI, Manakov YuA, Kupriyanov AN. Metodicheskie rekomendatsii po lesnoy rekulʹtivatsii narushennykh zemelʹ na predpriyatiyakh ugolʹnoy promyshlennosti v Kuzbasse [Methodical recommendations for forest reclamation of disturbed lands at coal industry enterprises in Kuzbass]. Kemerovo: Irbis; 2017. 44 p. (In Russ.).
  38. Kidd P, Mench M, Álvarez-López V, Bert V, Dimitriou I, Friesl-Hanl W, et al. Agronomic practices for improving gentle remediation of trace element-contaminated soils. International Journal of Phytoremediation. 2015;17(11):1005–1037. https://doi.org/10.1080/15226514.2014.1003788.
  39. Gucwa-Przepiora E, Małkowski E, Sas-Nowosielska A, Kucharski R, Krzyzak J, Kita A, et al. Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Waryński at different soil depths. Environmental Pollution. 2007;150(3):338–346. https://doi.org/10.1016/j.envpol.2007.01.024.
  40. Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A, et al. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: A large-scale field trial on heavily polluted soil. Environmental Pollution. 2009;157(7):2108–2117. https://doi.org/10.1016/j.envpol.2009.02.011.
  41. Quintela-Sabaris C, Marchand L, Kidd PS, Friesl-Hanl W, Puschenreiter M, Kumpiene J, et al. Assessing phytotoxicity of trace element-contaminated soils phytomanaged with gentle remediation options at ten European field trials. Science of the Total Environment. 2017;599–600:1388–1398. https://doi.org/10.1016/j.scitotenv.2017.04.187.
  42. Ruttens A, Boulet J, Weyens N, Smeets K, Adriaensen K, Meers E, et al. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. International Journal of Phytoremediation. 2011;13:194–207. https://doi.org/10.1080/15226514.2011.568543.
  43. Enell A, Andersson-Sköld Y, Vestin J, Wagelmans M. Risk management and regeneration of brownfields using bioenergy crops. Journal of Soils and Sediments. 2016;16(3):987–1000. https://doi.org/10.1007/s11368-015-1264-6.
  44. Vlasyuk LI. Strategic priority for greening the Kuzbass economy: land rehabilitation fund. Administrative Consulting. 2021;146(2):69–78. (In Russ.). https://doi.org/10.22394/1726-1139-2021-2-69-78.
  45. Tereshchenko NN, Pisarchuk AD, Alekseeva TP, Burmistrova TI. Bioremediation of coal dumps in Kuzbass region with using the products of deep peat processing. Fundamental research. 2013;(11–9):1866–1872. (In Russ.).
  46. Desai M, Haigh M, Walkington H. Phytoremediation: Metal decontamination of soils after the sequential forestation of former opencast coal land. Science of the Total Environment. 2019;656:670–680. https://doi.org/10.1016/j.scitotenv.2018.11.327.
  47. Juwarkar AA, Jambhulkar HP. Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresource Technology. 2008;99(11):4732–4741. https://doi.org/10.1016/j.biortech.2007.09.060.
  48. Mukasa-Mugerwa TT, Dames JF, Rose PD. The role of a plant/fungal consortium in the degradation of bituminous hard coal. Biodegradation. 2011;22(1):129–141. https://doi.org/10.1007/s10532-010-9382-8.
  49. Palanivel TM, Sivakumar N, Al-Ansari A, Victor R. Bioremediation of copper by active cells of Pseudomonas stutzeri LA3 isolated from an abandoned copper mine soil. Journal of Environmental Management. 2020;253. https://doi.org/10.1016/j.jenvman.2019.109706.
  50. Ayangbenro AS, Babalola OO. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health. 2017;14(1). https://doi.org/10.3390/ijerph14010094.
  51. Miao R, Guo M, Zhao X, Gong Z, Jia C, Li X, et al. Response of soil bacterial communities to polycyclic aromatic hydrocarbons during the phyto-microbial remediation of a contaminated soil. Chemosphere. 2020;261. https://doi.org/10.1016/j.chemosphere.2020.127779.
How to quote?
Fotina NV, Emelianenko VP, Vorob’eva EE, Burova NV, Ostapova EV. Contemporary Biological Methods of Mine Reclamation in the Kemerovo Region – Kuzbass. Food Processing: Techniques and Technology. 2021;51(4):869–882. (In Russ.). https://doi.org/10.21603/2074-9414-2021-4-869-882.
About journal

Download
Contents
Abstract
Keywords
References