Аннотация
Введение. Основным источником антропогенного воздействия на ландшафты Кемеровской области – Кузбасса является добыча угля. Темпы рекультивации нарушенных земель незначительны по сравнению с их ежегодным приростом нарушенных земель. Для решения проблемы предлагается сформировать фонд рекультивации. Цель работы – анализ и систематизация имеющихся данных антропогенного воздействия угледобычи на территории Кемеровской области; анализ новых методов рекультивации, позволяющих с высокой эффективностью восстанавливать плодородный слой почвы, а также повышать процесс ее очищения от вредных ингредиентов.Объекты и методы исследования. Общедоступная научная информация баз данных PubMed от National Center for Biotechnology Information (США) и Elsevier (Scopus, ScienceDirect), платформы Web of Science и отечественной электронной библиотеки eLibrary.ru с глубиной поиска 10 лет.
Результаты и их обсуждение. На основании литературных источников выявлены территории Кемеровской области – Кузбасса, подвергшиеся наибольшему антропогенному воздействию в ходе угледобычи (Новокузнецкий, Прокопьевский Кемеровский, Беловский, Ленинск-Кузнецкий округа/районы). Описаны распространенные поллютанты, присутствующие на территории угледобычи и в местах захоронения ее отходов. Показано, что наибольшую опасность представляют полициклические ароматические углеводороды (ПАУ). Это связано с тем, что в процессе горения отвалов они способны распространяться в газовой среде на значительные расстояния. Так как большинство отвалов находится вблизи населенных пунктов, а ПАУ обладают канцерогенными свойствами, то были подробно рассмотрены варианты их биодеструкции. Также рассмотрена законодательная база рекультивации нарушенных земель. Приведен перечень рекомендованных растений для биологического этапа рекультивации, в том числе культур растений, обладающих высокой поглотительной способностью в отношении поллютантов. Приведены примеры микроорганизмов и их комплексов, применяемых для целей биоремедиации.
Выводы. В ходе обзора литературы выявлены перспективные методы восстановления и очистки нарушенных угледобычей земель в условиях Кемеровской области – Кузбасса. К ним относят процессы биоремедиации с использованием перспективных микробных консорциумов и культур растений, характеризующихся способностью к связыванию поллютантов.
Ключевые слова
Угольные отвалы, угледобыча, рекультивация, фиторемедиация, биоремедиация, поллютанты, полициклические ароматические углеводороды, загрязнение окружающей среды, горнодобывающая промышленностьФИНАНСИРОВАНИЕ
Работа выполнена в рамках государственного задания для выполнения научно-исследовательских работ по теме «Разработка подходов к фиторемедиации посттехногенных ландшафтов с использованием стимулирующих рост растений ризобактерий (PGPB) и “омиксных” технологий», дополнительное соглашение № 075-03-2021-189/4 от 30.09.2021 (внутренний номер 075-ГЗ/X4140/679/4). Работа выполнена с использованием оборудования Центра коллективного пользования научным оборудованием КемГУ.СПИСОК ЛИТЕРАТУРЫ
- Цивилев С. Е. Кузбасс 2035: национальные интересы и стратегические приоритеты развития региона. // Экономика промышленности. 2020. Т. 13. № 3. С. 281–289. https://doi.org/10.17073/2072-1633-2020-3-281-289.
- Зеленый Кузбасс: как увеличить темпы рекультивации. URL: https://gazeta.a42.ru/lenta/projects/62513-zelyonyi-kuzbass-kak-uvelichit-tempy-rekultivacii (дата обращения: 21.08.2021).
- Наумов И. В. Исследование пространственных диспропорций в процессах нарушения и рекультивации земельных ресурсов в России // Известия Уральского государственного горного университета. 2019. Т. 56. № 4. С. 143–152.
- Борзенкова А. В., Синьков Л. С. Механизм финансовых гарантий рекультивации земель при открытых горных работах // Управление экономическими системами: электронный научный журнал. 2013. Т. 58. № 10.
- Петрова Т. В., Корабель Л. А. Анализ возможностей использования механизмов финансовых гарантий для финансирования работ по рекультивации // Горный информационно-научный бюллетень (научно-технический журнал). 2015. № 7. С. 250–254.
- Яковлева А. В. Концепция формирования проектного фонда рекультивации земель при открытых горных работах // Интернет-журнал Науковедение. 2015. Т. 7. № 1. https://doi.org/10.15862/33EVN115.
- Li W., Chen B., Ding X. Environment and reproductive health in China: challenges and opportunities Environ // Environmental Health Perspectives. 2012. Vol. 120. № 5. P. 184–185. https://doi.org/10.1289/ehp.1205117.
- Enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere of sudangrass (Sorghum × drummondii) / J. J. A. Dominguez [et al.] // Chemosphere. 2019. Vol. 234. P. 789–795. https://doi.org/10.1016/j.chemosphere.2019.05.290.
- Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany / K. Wolf [et al.] // Science of the Total Environment. 2017. Vol. 579. P. 1531–1540. https://doi.org/10.1016/j.scitotenv.2016.11.160.
- Borah P., Kumar M., Devi P. Types of inorganic pollutants: metals/metalloids, acids, and organic forms // Inorganic pollutants in water / editors P. Devi, P. Singh, S. K. Kansal. Elsevier, 2020. Р. 17–31. https://doi.org/10.1016/B978-0-12-818965-8.00002-0.
- Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes / R. Dixit [et al.] // Sustainability. 2015. Vol. 7. № 2. P. 2189–2212. https://doi.org/10.3390/su7022189.
- Марки угля. URL: https://gruntovozov.ru/chasto-zadavayemiye-voprosy/vidyi-uglya/marki-uglya/#:~:text=Какие%20марки%20угля%20существуют.%20Согласно,(КС).%20Коксовый%20слабоспекающийся%20низкометаморфизованный%20(КСН (дата обращения: 22.08.2021).
- Государственный реестр объектов размещения отходов. URL: https://www.fcao.ru/groro?page=332 (дата обращения: 21.08.2021).
- Авгушевич И. В., Сидорук Е. И., Броновец Т. М. Стандартные методы испытания углей. Классификация углей. М.: Реклама мастер, 2018. 574 с.
- Полициклические ароматические углеводороды из углей в объектах окружающей среды / Е. В. Журавлева [и др.] // Химия в интересах устойчивого развития. 2020. Т. 28. № 3. С. 328–336. https://doi.org/10.15372/KhUR2020237.
- Polar polycyclic aromatic compounds from different coal types show varying mutagenic potential, EROD induction and bioavailability depending on coal rank / W. Meyer [et al.] // Science of the Total Environment. 2014. Vol. 494–495. Р. 320–328. https://doi.org/10.1016/j.scitotenv.2014.06.140.
- Chemical fingerprinting of hydrocarbons / S. A. Stout [et al.] // Introduction to environmental forensics / editors B. L. Murphy, R. D. Morrison. San Diego: Academic Press, 2002. P. 137–260.
- Determination of PAH in coal of different metamorphism degrees from the Kuznetsk coal basin / E. R. Khabibulina [et al.] // Proceedings of the International Scientific and Practical Conference. 2015. Vol. 2. P. 268–271.
- Ahrens M. J., Morrisey D. J. Biological effects of unburnt coal in the marine environment // Oceanography and Marine Biology. 2005. Vol. 43. P. 69–122.
- Yahiya M., Miranda M. T. P. Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in the south west coast of Kerala, India // Materials Today: Proceedings. 2021. Vol. 41. Р. 736–743. https://doi.org/10.1016/j.matpr.2020.07.440.
- Effects of benzo [a] pyrene (BaP) on the composting and microbial community of sewage sludge / H. Liu [et al.] // Chemosphere. 2019. Vol. 222. Р. 517–526. https://doi.org/10.1016/j.chemosphere.2019.01.180.
- Accumulation of polycyclic aromatic hydrocarbons in soils and plants of the tundra zone under the impact of coal-mining industry / E. V. Yakovleva [et al.] // Eurasian Soil Science. 2016. Vol. 49. № 11. P. 1319–1328. https://doi.org/10.1134/S1064229316090143.
- Effect of naphthalene on photosystem 2 photochemical activity of pea plants / A. V. Lankin [et al.] // Biochemistry. 2014. Vol. 79. № 11. P. 1216–1225. https://doi.org/10.1134/S0006297914110091.
- Hindersmann B., Achten C. Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs // Environmental Pollution. 2018. Vol. 242. Р. 1217–1225. https://doi.org/10.1016/j.envpol.2018.08.014.
- Leaching of polycyclic aromatic hydrocarbons (PAHs) from coal dumps reclaimed with apple trees: a mechanistic insight / M. J. Garcia-Martinez [et al.] // Environmental Geochemistry and Health. 2018. Vol. 40. № 6. Р. 2695–2706. https://doi.org/10.1007/s10653-018-0133-9.
- Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils / C. Pies [et al.] // Chemosphere. 2008. Vol. 72. № 10. Р. 1594–1601. https://doi.org/10.1016/j.chemosphere.2008.04.021.
- Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Cochin estuary, India / A. Ramzi [et al.] // Marine Pollution Bulletin. 2017. Vol. 144. № 2. Р. 1081–1087. https://doi.org/10.1016/j.marpolbul.2016.10.015.
- Drwal E., Rak A., Gregoraszczuk E. L. Review: polycyclic aromatic hydrocarbons (PAHs) – action on placental function and health risks in future life of newborns // Toxicology. 2019. Vol. 411. P. 133–142. https://doi.org/10.1016/j.tox.2018.10.003.
- Comparative mechanisms of PAH toxicity by benzo[a]pyrene and dibenzo[def,p]chrysene in primary human bronchial epithelial cells cultured at air-liquid interface / Y. Chang [et al.] // Toxicology and Applied Pharmacology. 2019. Vol. 379. https://doi.org/10.1016/j.taap.2019.114644.
- Variations in concentrations and compositions of polycyclic aromatic hydrocarbons (PAHs) in coals related to the coal rank and origin / S. Laumann [et al.] // Environmental Pollution. 2011. Vol. 159. № 10. Р. 2690–2697. https://doi.org/10.1016/j.envpol.2011.05.032.
- Achten C., Hofmann T. Native polycyclic aromatic hydrocarbons (PAH) in coals – A hardly recognized source of environmental contamination // Science of the Total Environment. 2009. Vol. 407. № 8. Р. 2461–2473. https://doi.org/10.1016/j.scitotenv.2008.12.008.
- Экологические проблемы кузнецкого угольного бассейна. Научные подходы и технологии для снижения загрязнений окружающей среды / З. Р. Исмагилов [и др.] // Химия в интересах устойчивого развития. 2018. Т. 26. № 3. С. 241–260. https://doi.org/10.15372/KhUR20180302.
- Kuna-Gwozdziewicz P. Emission of polycyclic aromatic hydrocarbons from the exhalation zones of thermally active mine waste dumps // Journal of Sustainable Mining. 2013. Vol. 12. № 1. P. 7–12. https://doi.org/10.7424/jsm130103.
- Mukasa-Mugerwa T. T., Dames J. F., Rose P. D. The role of a plant/fungal consortium in the degradation of bituminous hard coal // Biodegradation. 2011. Vol. 22. № 1. P. 129–141. https://doi.org/10.1007/s10532-010-9382-8.
- Heavy metal- and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland) / A. Nadudvari [et al.] // Journal of Hazardous Materials. 2021. Vol. 412. https://doi.org/10.1016/j.jhazmat.2021.125244.
- Правила проведения рекультивации и консервации земель. URL: https://www.consultant.ru/document/cons_doc_LAW_302235/90e01d185047971fe921b2bb4ea2abe4389a57d5/ (дата обращения: 22.08.2021).
- Уфимцев В. И., Манаков Ю. А., Куприянов А. Н. Методические рекомендации по лесной рекультивации нарушенных земель на предприятиях угольной промышленности в Кузбассе. Кемерово: Ирбис, 2017. 44 с.
- Agronomic practices for improving gentle remediation of trace element-contaminated soils / P. Kidd [et al.] // International Journal of Phytoremediation. 2015. Vol. 17. № 11. P. 1005–1037. https://doi.org/10.1080/15226514.2014.1003788.
- Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Waryński at different soil depths / E. Gucwa-Przepiora [et al.] // Environmental Pollution. 2007. Vol. 150. № 3. P. 338–346. https://doi.org/10.1016/j.envpol.2007.01.024.
- Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: A large-scale field trial on heavily polluted soil / S. Castiglione [et al.] // Environmental Pollution. 2009. Vol. 157. № 7. P. 2108–2117. https://doi.org/10.1016/j.envpol.2009.02.011.
- Assessing phytotoxicity of trace element-contaminated soils phytomanaged with gentle remediation options at ten European field trials / C. Quintela-Sabaris [et al.] // Science of the Total Environment. 2017. Vol. 599–600. P. 1388–1398. https://doi.org/10.1016/j.scitotenv.2017.04.187.
- Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils / A. Ruttens [et al.] // International Journal of Phytoremediation. 2011. Vol. 13. P. 194–207. https://doi.org/10.1080/15226514.2011.568543.
- Risk management and regeneration of brownfields using bioenergy crops / A. Enell [et al.] // Journal of Soils and Sediments. 2016. Vol. 16. № 3. P. 987–1000. https://doi.org/10.1007/s11368-015-1264-6.
- Власюк Л. И. Стратегический приоритет экологизации экономики Кузбасса: фонд рекультивации земель // Управленческое консультирование. 2021. Т. 146. № 2. С. 69–78. https://doi.org/10.22394/1726-1139-2021-2-69-78.
- Биоремедиация угольных отвалов Кузбасса при помощи продуктов комплексной переработки торфа / Н. Н. Терещенко [и др.] // Фундаментальные исследования. 2013. № 11–9. С. 1866–1872.
- Desai M., Haigh M., Walkington H. Phytoremediation: Metal decontamination of soils after the sequential forestation of former opencast coal land // Science of the Total Environment. 2019. Vol. 656. Р. 670–680. https://doi.org/10.1016/j.scitotenv.2018.11.327.
- Juwarkar A. A., Jambhulkar H. P. Phytoremediation of coal mine spoil dump through integrated biotechnological approach // Bioresource Technology. 2008. Vol. 99. № 11. Р. 4732–4741. https://doi.org/10.1016/j.biortech.2007.09.060.
- Mukasa-Mugerwa T. T., Dames J. F., Rose P. D. The role of a plant/fungal consortium in the degradation of bituminous hard coal // Biodegradation. 2011. Vol. 22. № 1. P. 129–141. https://doi.org/10.1007/s10532-010-9382-8.
- Bioremediation of copper by active cells of Pseudomonas stutzeri LA3 isolated from an abandoned copper mine soil / T. M. Palanivel [et al.] // Journal of Environmental Management. 2020. Vol. 253. https://doi.org/10.1016/j.jenvman.2019.109706.
- Ayangbenro A. S., Babalola O. O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents // International Journal of Environmental Research and Public Health. 2017. Vol. 14. № 1. https://doi.org/10.3390/ijerph14010094.
- Response of soil bacterial communities to polycyclic aromatic hydrocarbons during the phyto-microbial remediation of a contaminated soil / R. Miao [et al.] // Chemosphere. 2020. Vol. 261. https://doi.org/10.1016/j.chemosphere.2020.127779.