ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Thermophysical Parameters of a Semi-Finished Watermelon Product as an Object of Dehumidification

Abstract
Introduction. Pectin-based protective coatings can produce a perfect biodegradable edible film. Secondary watermelon raw materials are a promising resource for this type of food coating as it contains 13.4% of pectin components, of which 8.1% is protopectin. The present research objective was to find the density and thermophysical characteristics of the pectin extract in order to optimize the drying process.
Study objects and methods. The research featured a pectin extract from watermelon rind. Its thermophysical properties were defined according to the thermocouple inertia method. The calorimetric method was used to change the aggregation state, while the pycnometric method was applied to calculate the density. The method of criterion equations helped to define the heat transfer coefficient.
Results and discussion. The average density of the final film material was 652 kg/m3 and that of the liquid semi-finished product was 1,028 kg/m3. The research also revealed the dependence of physical density and humidity W, heat capacity, thermal diffusivity, and thermal conductivity. For different W, averaged were 3393, 3225, 3137, and 3113, respectively. The study also provided the criterion dependence for determining the heat transfer coefficient and modified α on the speed of the air coolant for artificial convection at conventional coolant temperature (≈ 100°C) in contact with the food product surface (≈ 80°C).
Conclusion. The article introduces the thermophysical characteristics and physical density of watermelon gel for various humidity and thermal agent parameters, as well as a modified criterion dependence for determining the heat transfer coefficient. The research results can be used to design dehydration operations, other thermophysical processes, and their equipment.
Keywords
Watermelon raw materials, rind, pectin extracts, protective film, thermophysical parameters, structural and mechanical characteristics, drying
REFERENCES
  1. Khatko ZN, Ashinova AA. Pektinosoderzhashchie plenochnye struktury [Pectin-containing film structures]. Maykop: Maykop State Technological University; 2019. 112 p. (In Russ.).
  2. Ryabtseva SA, Tabakova YuA, Khramtsov AG, Anisimov GS, Kravtsov VA. Modelling formation and removal of biofilms in secondary dairy raw materials. Foods and Raw Materials. 2021;9(1):59–68. https://doi.org/10.21603/2308-4057-2021-1-59-68.
  3. Adetunji LR, Adekunle A, Orsat V, Raghavan V. Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloids. 2017;62:239–250. https://doi.org/10.1016/j.foodhyd.2016.08.015.
  4. Toth N, Sedlar A, Radman S, Fabek Uher S, Zutic I, Benko B. Effect of rootstock on growth dynamics and yield components of early watermelon cultivars. Acta Horticulturae. 2021;1320:355–362. https://doi.org/10.17660/ActaHortic.2021.1320.47.
  5. Rahman MM, Joardder MUH, Karim A. Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosystems Engineering. 2018;169:126–138. https://doi.org/10.1016/j.biosystemseng.2018.02.007.
  6. Zielinska M, Ropelewska E, Markowski M. Thermophysical properties of raw, hot-air and microwave-vacuum dried cranberry fruits (Vaccinium macrocarpon). LWT. 2017;85:204–211. https://doi.org/10.1016/j.lwt.2017.07.016.
  7. Roratto TB, Monteiro RL, Carciofi BAM, Laurindo JB. An innovative hybrid-solar-vacuum dryer to produce high-quality dried fruits and vegetables. LWT. 2021;140. https://doi.org/10.1016/j.lwt.2020.110777.
  8. Divin A, Ponomarev S, Petrasheva M, Lyubimova D, Mozgova G, Belyaev P, et al. The method and the device for measuring thermophysical properties of liquids. IOP Conference Series: Materials Science and Engineering. 2019;693(1). https://doi.org/10.1088/1757-899X/693/1/012020.
  9. Albouchi F, Abdelmajid J. Photothermal investigations of conductive and optical properties of liquids in the near infrared. Instrumentation Mesure Metrologie. 2021;20(1):49–56. https://doi.org/10.18280/I2M.200107.
  10. Korotkiy IA, Neverov EN, Vladimirov AA, Neverova OA, Proskuryakova LA. Thermophysical characteristics of tropical fruits in milk powder products. Food Processing: Techniques and Technology. 2021;51(2):220–231. (In Russ.). https://doi.org/10.21603/2074-9414-2021-2-220-231.
  11. Jafari SM, Saremnejad F, Dehnad D. Nano-fluid thermal processing of watermelon juice in a shell and tube heat exchanger and evaluating its qualitative properties. Innovative Food Science and Emerging Technologies. 2017;42:173–179. https://doi.org/10.1016/j.ifset.2017.04.003.
  12. El Matarawy A, El-Dien EM. Precise temperature controlling algorithm for metrological adiabatic calorimeters based on proportional-integration (α) thermal energy. Journal of Thermal Analysis and Calorimetry. 2021. https://doi.org/10.1007/s10973-021-10806-2.
  13. Melro E, Antunes F, Cruz I, Ramos PE, Carvalho F, Alves L. Morphological, textural and physico-chemical characterization of processed meat products during their shelf life. Food Structure. 2020;26. https://doi.org/10.1016/j.foostr.2020.100164.
  14. Nugmanov AKh-Kh, Krasnov VA, Maksimenko YuA, Fomenko EV. Issledovanie teploemkosti pastoobraznykh pishchevykh produktov [Heat capacity of pasty food products]. Natural and Technical Sciences. 2015;84(6):487–489. (In Russ.).
  15. Singh P, Kalita P, Mahanta P, Das HJ. Study of granular food material drying in a pilot-scale rotating fluidized bed with static geometry dryer. In: Pandey KM, Misra RD, Patowari PK, Dixit US, editors. Recent advances in mechanical engineering: Select proceedings of ICRAME 2020. Singapore: Springer; 2021. pp. 555–562. https://doi.org/10.1007/978-981-15-7711-6_55.
  16. Carvalho GR, Polachini TC, Augusto PED, Telis-Romero J, Bon J. Physical properties of barley grains at hydration and drying conditions of malt production. Journal of Food Process Engineering. 2021;44(4). https://doi.org/10.1111/jfpe.13644.
  17. Hijjaji K, Gabsi S, Frikha N. Determination of heat and mass transfer coefficients in a spray humidifier humidification–dehumidification desalination system. Desalination and Water Treatment. 2021;225:392–401. https://doi.org/10.5004/dwt.2021.27218.
  18. Reinhardt A, Cheng B. Quantum-mechanical exploration of the phase diagram of water. Nature Communications. 2021;12(1). https://doi.org/10.1038/s41467-020-20821-w.
  19. Jouki M, Khazaei N, Rashidi-Alavijeh S, Ahmadi S. Encapsulation of Lactobacillus casei in quince seed gum-alginate beads to produce a functional synbiotic drink powder by agro-industrial by-products and freeze-drying. Food Hydrocolloids. 2021;120. https://doi.org/10.1016/j.foodhyd.2021.106895.
  20. Özbek HN. Radio frequency-assisted hot air drying of carrots for the production of carrot powder: Kinetics and product quality. LWT. 2021;152. https://doi.org/10.1016/j.lwt.2021.112332.
  21. Chasiotis V, Tzempelikos D, Mitrakos D, Filios A. Numerical and experimental analysis of heat and moisture transfer of Lavandula x allardii leaves during non-isothermal convective drying. Journal of Food Engineering. 2021;311. https://doi.org/10.1016/j.jfoodeng.2021.110708.
  22. Ostrikov AN, Ospanov AA, Shevtsov AA, Muslimov NZh, Timurbekova AK, Jumabekova GB. Mathematical model of high-temperature tubeshaped pasta drying in a conveyer belt drier. International Journal of Food Engineering. 2021;17(3):209–215. https://doi.org/10.1515/ijfe-2020-0101.
  23. Rybka A, Heřmánek P, Honzík I, Krofta K. Parameters of the drying medium and dried hops in belt dryer. Research in Agricultural Engineering. 2017;63:S24–S32. https://doi.org/10.17221/35/2017-RAE.
  24. Fukami K, Mukunoki T, Nakano K, Matsuo N, Okayasu T. Water leakage control by using vibratory roller on a dry-seeded rice field in southwestern Japan. Soil and Tillage Research. 2017;166:138–146. https://doi.org/10.1016/j.still.2016.09.011.
  25. Lutfy OF, Mohd Noor SB, Marhaban MH, Abbas KA, Mansor H. Neuro-fuzzy modeling of a conveyor-belt grain dryer. Journal of Food, Agriculture and Environment. 2010;8(3–4):128–134.
  26. Kamata T, Wada K, Ichikawa H. Dry pre-coating of active pharmaceutical ingredient with submicron-sized hydroxypropylcellulose in dry granulation using roller compactor improves granule properties. Journal of Drug Delivery Science and Technology. 2018;43:34–43. https://doi.org/10.1016/j.jddst.2017.08.009.
  27. Friso D. Conveyor-belt dryers with tangential flow for food drying: Mathematical modeling and design guidelines for final moisture content higher than the critical value. Inventions. 2020;5(2). https://doi.org/10.3390/inventions5020022.
  28. Tekhnicheskie usloviya na plenki polimernye dlya pishchevoy promyshlennosti [Specifications for polymer films in food industry] [Internet]. [cited 2021 Jul 02].
  29. Ribeiro MLFF, Roos YH, Ribeiro APB, Nicoletti VR. Effects of maltodextrin content in double-layer emulsion for production and storage of spray-dried carotenoid-rich microcapsules. Food and Bioproducts Processing. 2020;124:208–221. https://doi.org/10.1016/j.fbp.2020.09.004.
  30. Hader M, Al-Kouz W, Kiwan S, Alshare A, Chamkha A. Computational analysis of the thermal performance of rarefied air flow in V-shaped microchannels. Heat Transfer. 2021;50(4):3977–3995. https://doi.org/10.1002/htj.22060.
How to quote?
Nugmanov AH-H, Meshcheryakova GS, Lebedev VA, Borodulin DM, Aleksanian IYu, Sokolova EV. Thermophysical Parameters of a Semi-Finished Watermelon Product as an Object of Dehumidification. Food Processing: Techniques and Technology. 2021;51(4):930–942. (In Russ.). https://doi.org/10.21603/2074-9414-2021-4-930-942.
About journal

Download
Contents
Abstract
Keywords
References