ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Callus cultures of Thymus vulgaris and Trifolium pratense as a source of geroprotectors

Introduction. Geroprotectors are biologically active substances that inhibit the aging process. Many plant species are natural geroprotectors. For instance, Thymus vulgaris and Trifolium pratense are callus cultures with strong geroprotective properties. Study objects and methods. The present research featured T. vulgaris and T. pratense grown in vitro on various nutrient media. Their extracts were obtained by aqueous-alcoholic extraction using the following parameters: water-ethanol solvent Se = 30, 50, and 70 %; temperature Te = 30, 50, and 70°C; time τe = 2, 4, and 6 h. The quantitative and qualitative analysis was based on high-performance liquid mass spectrometry, gas mass spectrometry, and thin-layer chromatography. Results and discussion. The optimal extraction parameters for T. vulgaris were τe = 4 h, Te = 50°C, Se = 70 %, for T. pratense – τe = 6 h, Te = 70°C, Se = 70 %. The chromatography detected flavonoids, phenylpropanoids, simple phenols, higher fatty acids, mono- and sesquiterpenes, and aliphatic hydrocarbons. T. vulgaris appeared to have the highest content of thymol (23.580 ± 1.170 mg/mL); its thymol, apigenin, gallic, chlorogenic, and caffeic components demonstrated geroprotective properties. The extract of T. pratense possessed the highest rutin content (10.05 ± 0.35 mg/mL), and it owed its geroprotective characteristics to rutin, chlorogenic and p-coumaric acids. Conclusion. The callus cultures of T. vulgaris and T. pratense proved to be promising sources of geroprotective biologically active substances.
Extraction, geroprotectors, Thymus vulgaris, Trifolium pratense, biologically active substances
  1. Wallace DR, Buha A, Powell JJ, Tsatsakis A. Editorial overview: The environment and man: A Study in mechanistic toxicology. Current Opinion in Toxicology. 2020;19.
  2. Vesnina A, Prosekov A, Kozlova O, Atuchin V. Genes and eating preferences, their roles in personalized nutrition. Genes. 2020;11(4).
  3. Dyshlyuk L, Babich O, Prosekov A, Ivanova S, Vasilchenco N, Atuchin V, et al. Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation. International Biodeterioration and Biodegradation. 2020;146.
  4. Kumar P, Druckman A, Gallagher J, Gatersleben B, Allison S, Eisenman TS, et al. The nexus between air pollution, green infrastructure and human health. Environment International. 2019;133.
  5. Jacobson TA, Kler JS, Hernke MT, Braun RK, Meyer KC, Funk WE. Direct human health risks of increased atmospheric carbon dioxide. Nature Sustainability. 2019;2(8):691–701.
  6. Claßen T, Bunz M. Contribution of natural spaces to human health and wellbeing. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz. 2018;61(6):720–728.
  7. Asyakina LK, Fotina NV, Izgarysheva NV, Slavyanskiy AA, Neverova OA. Geroprotective potential of in vitro bioactive compounds isolated from yarrow (Achilleae millefolii L.) cell cultures. Foods and Raw Materials. 2021;9(1):126–134.
  8. Dmitrieva AI, Belashova OV, Milenteva IS, Ivanova SA, Prosekov AYu. Assessment of the content of heavy metals in medicinal plants of genus Trifolium from the growing area on the example of the Siberian Federal District. International Journal of Pharmaceutical Research. 2020;12(3):1880–1893.
  9. Vardanyan LR, Vardanyan RL, Galstyan AG, Atabekyan LV. Kinetics of the combined anti-oxidant action of the extractions of herb material and their mixtures. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2019;(4):5–12. (In Russ.).
  10. Vesnina AD, Dmitrieva AI, Asyakina LK, Velichkovich NS, Prosekov AYu. Relevance of the use of plant extracts in the creation of functional products that have a geroprotective effect. International Journal of Pharmaceutical Research. 2020;12(3):1865–1879.
  11. Fotina NV, Dmitrieva AI, Milenteva IS, Prosekov AYu. Optimization of parameters for extracting biologically active substances Medicago sativa L. International Journal of Pharmaceutical Research. 2020;12(3):1857–1864.
  12. Bubaloa MC, Vidovis S, Redovnikovis IR, Jokisc S. New perspective in extraction of plant biologically active compounds by green solvents. Food and Bioproducts Processing. 2018;109:52–73.
  13. Bilal M, Iqbal HMN. Biologically active macromolecules: Extraction strategies, therapeutic potential and biomedical perspective. International Journal of Biological Macromolecules. 2020;151:1–18.
  14. Chupakhin E, Babich O, Krasavin M, Prosekov A, Asyakina L. Spirocyclic motifs in natural products. Molecules. 2019;24(22).
  15. Kumar M, Dahuja A, Tiwari S, Punia S, Tak Y, Amarowicz R, et al. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chemistry. 2021;353.
  16. Görgüç A, Gençdağ E, Yılmaz FM. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments – A review. Food Research International. 202;136.
  17. Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M. Geroprotectors: A unified concept and screening approaches. Aging and Disease. 2017;8(3):354–363.
  18. Azwanida NN. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal and Aromatic Plants. 2017;4(3). https:/
  19. Ameer K, Shahbaz HM, Kwon J-H. Green extraction methods for polyphenols from plant matrices and their byproducts: A Review. Comprehensive Reviews in Food Science and Food Safety. 2017;16(2):295–315.
  20. Tyskiewicz K, Konkol M, Roj E. The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules. 2018;23(10).
  21. Leonova MV, Klimochkin YuN. Ehkstraktsionnye metody izgotovleniya lekarstvennykh sredstv iz rastitelʹnogo syrʹya [Extraction methods in the production of medicinal products from plant raw materials]. Samara: Samara State Technical University; 2012. 118 p. (In Russ.).
  22. Lozano-Grande MA, Gorinstein S, Espitia-Rangel E, Dávila-Ortiz G, Martínez-Ayala AL. Plant sources, extraction methods, and uses of squalene. International Journal of Agronomy. 2018;2018.
  23. Gonçalves S, Romano A. Green approaches for the extraction of bioactives from natural sources for pharmaceutical applications. In: Inamuddin, Boddula R, Ahamed MI, Asiri A, editors. Green sustainable process for chemical and environmental engineering and science. Solvents for the pharmaceutical industry. Elsevier; 2020. pp. 249–267.
  24. Jacoby RP, Koprivova A, Kopriva S. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. Journal of Experimental Botany. 2021;72(1):57–69.
  25. Harhaun R, Kunik O, Saribekova D, Lazzara G. Biologically active properties of plant extracts in cosmetic emulsions. Microchemical Journal. 2020;154.
  26. Bhattacharya A. High-temperature stress and metabolism of secondary metabolites in plants. In: Bhattacharya A, editor. Effect of high temperature on crop productivity and metabolism of macro molecules. Academic Press; 2019. pp. 391–484.
  27. Kalashnikova EA, Zaytseva SM, Doan TT, Kirakosyan RN. Study of biological activity of extracts obtained from microclonal medicinal plants of different taxonomic groups in vitro. Veterinary, Zootechnics and Biotechnology. 2018;(12):50–58. (In Russ.).
  28. Leite KCDS, Garcia LF, Lobón GS, Thomaz DV, Moreno EKG, Carvalho MFD, et al. Antioxidant capacity evaluation of dried herbal extracts: an electroanalytical approach. Revista Brasileira de Farmacognosia. 2018;28(3):325–332.
  29. Pavlic B, Šojic B, Teslic N, Putnik P, Kovačević DB. Extraction of bioactive compounds and essential oils from herbs using green technologies. In: Galanakis CM, editor. Aromatic herbs in food. Bioactive compounds, processing, and applications. Academic Press; 2021. pp. 233–262.
  30. Manjare SD, Dhingra K. Supercritical fluids in separation and purification: A review. Materials Science for Energy Technologies. 2019;2(3):463–484.
  31. Freitas IR, Cattelan MG. Antimicrobial and antioxidant properties of essential oils in food systems – An overview. In: Holban AM, Grumezescu AM, editors. Microbial contamination and food degradation. A volume in handbook of food bioengineering. Academic Press; 2018. pp. 443–470.
  32. Malik NR, Yadav KC, Verma A. Optimization of process parameters in extraction of thyme oil using response surface methodology (RSM). International Journal of Science, Engineering and Technology. 2016;4(1):248–256.
  33. Šojić B, Tomović V, Kocić-Tanackov S, Kovačević DB, Putnik P, Mrkonjić Ž, et al. Supercritical extracts of wild thyme (Thymus serpyllum L.) by-product as natural antioxidants in ground work parties. LWT. 2020;130.
  34. Bendif H, Adouni K, Miara MD, Baranauskienė R, Kraujalis P, Venskutonis PR, et al. Essential oils (EOs), pressurized liquid extracts (PLE) and carbon dioxide supercritical fluid extracts (SFE-CO2 ) from Algerian Thymus munbyanus as valuable sources of antioxidants to be used on an industrial level. Food Chemistry. 2018;260:289–298.
  35. Mozdzen K, Barabasz-Krasny B, Stachurska-Swakon A, Zandi P, Pula J, Wang YS, et al. Allelopathic interaction between two common meadow plants: Dactylis glomerata L. and Trifolium pratense L. Biologia. 2020;75(5):653–663.
  36. Novoselov MYu, Starshinova OA, Drobysheva LV. The possibility of using self-compatible forms of meadow clover (Trifolium pratense L.) in breeding to increase seed productivity. IOP Conference Series: Earth and Environmental Science. 2021;663(1).
  37. Erkoyuncu MT, Yorgancilar M. Optimization of callus cultures at Echinacea purpurea L. for the amount of caffeic acid derivatives. Electronic Journal of Biotechnology. 2021;51:17–27.
  38. Murashige T, Scoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiology Plantarum. 1962;15(3):473–497.
  39. Gamborg OL, Miller RA, Ojima O. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research. 1968;50(1):151–158.
  40. Andreeva VYu, Kalinkina GI, Poluektova TV, Gulyaeva VA. The comparative study of phenolic compounds in Trifolium L. species in Siberia. Chemistry of Plant Raw Material. 2018;(1):97–104. (In Russ.).
  41. Nguen TSh, Kaukhova IE, Sorokin VV. Vybor metoda ehkstragirovanii flavonoidov iz travy klevera lugovogo [Selecting the method for extracting flavonoids from meadow clover]. Garmonizatsiya podkhodov k farmatsevticheskoy razrabotke: Sbornik tezisov II Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Harmonization of approaches to pharmaceutical development: Proceedings of the II International Scientific and Practical Conference]; 2019; Moscow. Moscow: RUDN University; 2019. p. 204–206. (In Russ.).
  42. Popova OS, Skrypnik LN. Comparative characteristic of the efficiency of various extraction methods of polyphenols from plants of the family Lamiaceae. Advances in Current Natural Sciences. 2017;(6):34–38. (In Russ.).
  43. Maksimova TV, Nikulina IN, Pakhomov VP, Shkarina EI, Chumakova ZV, Arzamastsev AP. Method for determining antioxidation activity. Patent RU 2170930AC1. 2001.
  44. Waksmundzka-Hajnos M, Sherma J, Kowalska T. Thin layer Chromatography in phytochemistry. Boca Raton: CRC Press; 2008. 896 p.
  45. Gedikolu A, Sökmen M,Çivit A. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Science and Nutrition. 2019;7(5):1704–1714.
  46. Bazarnova YuG, Ivanchenko OB. Investigation of the composition of biologically active substances in extracts of wild plants. Problems of Nutrition. 2016;85(5):100–107. (In Russ.).
  47. Dauqan EMA, Abdullah A. Medicinal and functional values of thyme (Thymus vulgaris L.) herb. Journal of Applied Biology and Biotechnology. 2017;5(2):17–22.
  48. Hanganu D, Benedec D, Vlase L, Olah N, Damian G, Silaghi-Dumitrescu R, et al. Polyphenolic profile and antioxidant and antibacterial activities from two trifolium species. Farmacia. 2017;65(3):449–453.
  49. Ertaş A, Boğa M, Haşimi N, Yılmaz MA. Fatty acid and essential oil compositions of Trifolium angustifolium var. angustifolium with antioxidant, anticholinesterase and antimicrobial activities. Iranian Journal of Pharmaceutical Research. 2015;14(1):233–241.
  50. Chiriac ER, Chiţescu CL, Borda D, Lupoae M, Gird CE, Geană E-I, et al. Comparison of the polyphenolic profile of Medicago sativa L. and Trifolium pratense L. sprouts in different germination stages using the UHPLC-Q exactive hybrid quadrupole Orbitrap high-resolution mass spectrometry. Molecules. 2020;25(10).
  51. Zeb A, Hussain A. Chemo-metric analysis of carotenoids, chlorophylls, and antioxidant activity of Trifolium hybridum. Heliyon. 2020;6(1).
How to quote?
Dyshlyuk LS, Fedorova AM, Loseva AI, Eremeeva NI. Callus cultures of Thymus vulgaris and Trifolium pratense as a source of geroprotectors. Food Processing: Techniques and Technology. 2021;51(2):423–432.
About journal