ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Enzymatic Reetherification in the Production of Butterfat Substitutes

Abstract
Enzymatic reetherification of fats has numerous technological and economic advantages, which makes its large-scale implementation highly efficient. Unlike chemical modification, enzymatic reetherification demonstrates a greater specificity, typical of the catalytic action of lipase, and a higher controllability. Lipases with positional specificity cause redistribution of fatty acids to occur only in extreme provisions of triglycerides. In addition, this method is 1.5 times lower than hydrogenation of fats. The authors used the facilities of an innovative laboratory provided by JSC Eurasian Foods Corporation to conduct practical research on reetherification of fatty mixes. The main objective was to study the effect of the fats obtained by fermental reetherification on the quality indicators of butterfat substitutes. The research featured the input products to be used in the formula of reetherified fat and prepared fat mixes for butterfat substitutes. The paper describes the process of enzymatic reetherification of mixes of oils and fats, prepared reesterified fats, and buttermilk substitutes obtained from reetherified fats. The process involved a sequence of reactors filled with Lipozyme TL IM, a granulated substance of a microbic 1.3-specific lipase. The lipase was obtained from Thermomyces Lanuginosus, which had been immobilized with silica gel. The obtained products conformed to the butterfat standards in that they contained 16–2% of polynonsaturated fatty acids, no transisomers of fatty acids, ≤ 38% of palmitiny acid, and ≤ 5% of solid triglycerides at 35 of °C. The melting temperature was under body heat. The resulting characteristics of butterfat substitutes make them high-quality dairy products.
Keywords
Transesterification, lipase trans-isomers, melting, triglycerides
REFERENCES
  1. Kumari A, Mahapatra P, Garlapati VK, Banerjee R. Enzymatic transesterification of Jatropha oil. Biotechnology for Biofuels. 2009;2. DOI: https://doi.org/10.1186/1754-6834-2-1.
  2. Borgolov AV, Gorin KV, Pozhidaev VM, Sergeeva YE, Gotovtsev PM, Vasilov RG. Mathematical modeling of triglyceride transesterification through enzymatic catalysis in a continuous flow bioreactor. Indian Journal of Science and Technology. 2016;9(47). DOI: https://doi.org/10.17485/ijst/2016/v9i47/109081.
  3. Christopher LP, Zambare VP, Zambare A, Kumar H, Malek L. A thermo-alkaline lipase from a new thermophile Geobacillus thermodenitrificans AV-5 with potential application in biodiesel production. Journal of Chemical Technology and Biotechonology. 2015;90(11):2007–2016. DOI: https://doi.org/10.1002/jctb.4678.
  4. Sellami M, Ghamgui H, Frikha F, Gargouri Y, Miled N. Enzymatic transesterification of palm stearin and olein blends to produce zero-trans margarine fat. BMC Biotechnology. 2012;12. DOI: https://doi.org/10.1186/1472-6750-12-48.
  5. Tian X-G, Du W, Dai L-M, Liu D-H. The development of enzymatic enrichment and separation of ω-3pufas. Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities. 2015;29(6):1285–1292. DOI: https://doi. org/10.3969/j.issn.1003-9015.2015.06.001.
  6. Zorn K, Oroz-Guinea I, Brundiek H, Bornscheuer UT. Engineering and application of enzymes for lipid modification, an update. Progress in Lipid Research. 2016;63:153–164. DOI: https://doi.org/10.1016/j.plipres.2016.06.001.
  7. Meunier SM, Kariminia H-R, Legge RL. Immobilized enzyme technology for biodiesel production. In: Singh LK, Chaudhary G, editors. Advances in Biofeedstocks and Biofuels, Volume 2: Production Technologies for Biofuels. John Wiley & Sons; 2016. pp. 67–106. DOI: https://doi.org.10.1002/9781119117551.ch3.
  8. Sankaran R, Show PL, Chang J-S. Biodiesel production using immobilized lipase: feasibility and challenges. Biofuels, Bioproducts and Biorefining. 2016;10(6):896–916. DOI: https://doi.org/10.1002/bbb.1719.
  9. Cesarini S, Infanzón B, Pastor FIJ, Diaz P. Fast and economic immobilization methods described for non-commercial Pseudomonas lipases. BMC Biotechnology. 2014;14. DOI: https://doi.org/10.1186/1472-6750- 14-27.
  10. Kovalenko GA, Chuenko TV, Perminova LV, Rudina NA. Synthesis of nanostructured carbon on Ni catalysts supported on mesoporous silica, preparation of carbon-containing adsorbents, and preparation and study of lipase-active biocatalysts. Kinetics and Catalysis. 2016;57(3):394–403. DOI: https://doi.org/10.1134/S002315841603006X.
  11. Modenez IA, Sastre DE, Moares FC, Marques Netto CGC. Influence of dlutaraldehyde cross-linking modes on the recyclability of immobilized lipase B from Candida antarctica for transesterification of soy bean oil. Molecules. 2018;23(9). DOI: https://doi.org/10.3390/molecules23092230.
  12. de Melo RR, Borin GP, Zanini GK, Neto AAK, Fernandes BS, Contesini FJ. An overview on vegetable oils and biocatalysis. In: Holt B, editor. Vegetable Oil: Properties, Uses and Benefits. Nova Science Publishers; 2016. pp. 1–24.
  13. Mahadevan GD, Neelagund SE. Thermostable lipase from Geobacillus sp. Iso5: Bioseparation, characterization and native structural studies. Journal of Basic Microbiology. 2014;54(5):386–396. DOI: https://doi.org/10.1002/jobm.201200656.
  14. Budžaki S, Miljić G, Tišma M, Sundaram S, Hessel V. Is there a future for enzymatic biodiesel industrial production in microreactors? Applied Energy. 2017;201:124–134. DOI: https://doi.org/10.1016/j.apenergy.2017.05.062.
  15. Zhao X, Qi F, Yuan C, Du W, Liu D. Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renewable and Sustainable Energy Reviews. 2015;44:182–197. DOI: https://doi.org/10.1016/j. rser.2014.12.021.
  16. Borrelli GM, Trono D. Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences. 2015;16(9):20773–20840. DOI: https://doi.org/10.3390/ijms160920774.
  17. Kumar A, Dhar K, Kanwar SS, Arora PK. Lipase catalysis in organic solvents: advantages and applications. Biological Procedures Online. 2016;18(1). DOI: https://doi.org/10.1186/s12575-016-0033-2.
  18. De Andrade CJ, De Gusmão AECFB, Simiqueli APR, De Lima EA, Zanini GK, Contesini FJ, et al. An overview on the main microbial enzymes in the food industry. In: Cunningham D, editor. Food Industry: Assessment, Trends and Current Issues. Nova Science Publishers; 2016. pp. 1–44.
  19. Lee HV, Juan JC, Binti Abdullah NF, Nizah MF R, Taufiq-Yap YH. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production. Chemistry Central Journal. 2014;8(1). DOI: https://doi.org/10.1186/1752- 153X-8-30.
  20. Ayaz B, Ugur A, Boran R. Purification and characterization of organic solvent-tolerant lipase from Streptomyces sp. OC119-7 for biodiesel production. Biocatalysis and Agricultural Biotechnology. 2015;4(1):103–108. DOI: https://doi.org/10.1016/j. bcab.2014.11.007.
  21. Wang M, Chen M, Fang Y, Tan T. Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Biotechnology for Biofuels. 2018;11(1). DOI: https://doi.org/10.1186/s13068-018-1020-4.
  22. Ekinci AP, Dinçer B, Baltaş N, Adigüzel A. Partial purification and characterization of lipase from Geobacillus stearothermophilus AH22. Journal of Enzyme Inhibition and Medicinal Chemistry. 2016;31(2):325–331. DOI: https://doi.org/10.310 9/14756366.2015.1024677.
  23. Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Canadian Journal of Microbiology. 2017;63(3):179–192. DOI: https://doi.org/10.1139/cjm-2016-0447.
  24. Han JY, Kim H. Transesterification using the cross-linked enzyme aggregate of Photobacterium lipolyticum lipase M37. Journal of Microbiology and Biotechnology. 2011;21(11):1159–1165. DOI: https://doi.org/10.4014/jmb.1106.06048.
  25. Kartal F, Kilinc A. Crosslinked aggregates of Rhizopus oryzae lipase as industrial biocatalysts: Preparation, optimization, characterization, and application for enantioselective resolution reactions. Biotechnology Progress. 2012;28(4):937–945. DOI: https://doi.org/10.1002/btpr.1571.
How to quote?
Tereshchuk LV, Starovoytova KV. Enzymatic Reetherification in the Production of Butterfat Substitutes. Food Processing: Techniques and Technology. 2019;49(2):270–280. (In Russ.). DOI: https://doi.org/10.21603/2074-9414-2019-2-270-280.
About journal

Download
Contents
Abstract
Keywords
References