Abstract
Soy is exceptionally rich in isoflavonoids, which are linked to various health benefits. The aim of the research was to determine the content of isoflavonoids in soy and some soy-containing foods.The research featured the Sentyabrinka soy variety developed at the All-Russian Research Institute of Soy, as well as such novel soy-containing foods as soy-and-pumpkin drinks and desserts, e.g. soy-and-pumpkin okara crackers. The content of isoflavonoids was determined by high performance liquid chromatography using a Millichrom F-02 chromatograph.
The total content of isoflavonoids was 221.10 mg/100 g in the soy beans, 44.50 mg/100 g – in the soy-and-pumpkin dessert, 36.15 mg/100 g – in the soy-and-pumpkin jelly, 30.80 mg/100 g – in the cracker with soy-and-pumpkin okara, 21.19 mg/100 g – in the protein drink, 12.72 mg/100 g – in the vitamin drink. The samples were tested for such isoflavonoids as genistein, diadzein (major), and glycetein (minor), which took the form of aglycones, glycosides (genistin, diadzin, and glycitein), and malonyl derivatives of glycosides. The highest content of malonyl diadzin and malonyl genistin was registered both in the soy beans and the soy-containing foods: from 42.56 in the crackers to 67.50% in the soy beans.
The content of isoflavonoids in the soy-containing food products depended on the formulation and production technology, namely, on the amount of soy. A daily intake of 200 g of soy-and-pumpkin drink or 100 g of soy-containing dessert could provide the daily intake of isoflavonoids, which makes these products beneficial for human health.
Keywords
Soy, pumpkin, isoflavones, drinks, desserts, okara, crackers, functional foodsREFERENCES
- Encyclopedia Britannica. Soybean [Internet]. [cited 2021 Dec 20]. Available from: https://www.britannica.com/plant/soybean
- Rizzo G, Baroni L. Soy, soy foods and their role in vegetarian diets. Nutrients. 2018;10(1). https://doi.org/10.3390/nu10010043
- Nakai S, Fujita M, Kamei Y. Health promotion effects of soy isoflavones. Journal of Nutritional Science and Vitaminology. 2020;66(6):502–507. https://doi.org/10.3177/jnsv.66.502
- Nachvak SM, Moradi S, Anjom-shoae J, Rahmani J, Nasiri M, Maleki V, et al. Soy, Soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: A systematic review and dose-response meta-analysis of prospective cohort studies. Journal of the Academy of Nutrition and Dietetics. 2019;119(9):1483–1500. https://doi.org/10.1016/j.jand.2019.04.011
- Rienks J, Barbaresko J, Nöthlings U. Association of isoflavone biomarkers with risk of chronic disease and mortality: A systematic review and meta-analysis of observational studies. Nutrition Reviews. 2017;75(8):616–641. https://doi.org/10.1093/nutrit/nux021
- Tang S, Du Y, Oh C, No J. Effects of soy foods in postmenopausal women: A focus on osteosarcopenia and obesity. Journal of Obesity and Metabolic Syndrome. 2020;29(3):180–187. https://doi.org/10.7570/jomes20006
- Hu C, Wong W-T, Wu R, Lai W-F. Biochemistry and use of soybean isoflavones in functional food development. Critical Reviews in Food Science and Nutrition. 2020;60(12):2098–2112. https://doi.org/10.1080/10408398.2019.1630598
- Xiao Y, Zhang S, Tong H, Shi S. Comprehensive evaluation of the role of soy and isoflavone supplementation in humans and animals over the past two decades. Phytotherapy Research. 2017;32(3):384–394. https://doi.org/10.1002/ptr.5966
- Jung YS, Rha C-S, Baik M-Y, Baek N-I, Kim D-O. A brief history and spectroscopic analysis of soy isoflavones. Food Science and Biotechnology. 2020;29(12):1605–1617. https://doi.org/10.1007/s10068-020-00815-6
- Chadha R, Bhalla Y, Jain A, Chadha K, Karan M. Dietary soy isoflavone: A mechanistic insight. Natural Product Communications. 2017;12(4):627–634. https://doi.org/10.1177/1934578x1701200439
- Islam A, Islam MS, Uddin MN, Hasan MMI, Akanda MR. The potential health benefits of the isoflavone glycoside genistin. Archives of Pharmacal Research. 2020;43(4):395–408. https://doi.org/10.1007/s12272-020-01233-2
- Gomez-Zorita S, Gonzalez-Arceo M, Fernandez-Quintela A, Eseberri I, Trepiana J, Portillo MP. Scientific evidence supporting the beneficial effects of isoflavones on human health. Nutrients. 2020;12(12). https://doi.org/10.3390/nu12123853
- Ahsan F, Imran M, Gilani SA, Bashir S, Khan AA, Khalil AA, et al. Effects of dietary soy and its constituents on human health: A review. Biomedical Journal of Scientific and Technical Research. 2018;12(2):9182–9187. https://doi.org/10.26717/BJSTR.2018.12.002239
- Xiao Y, Zhang S, Tong H, Shi S. Comprehensive evaluation of the role of soy and isoflavone supplementation in humans and animals over the past two decades. Phytotherapy Research. 2017;32(3):384–394. https://doi.org/10.1002/ptr.5966
- Sivonova MK, Kaplan P, Tatarkova Z, Lichardusova L, Dusenka R, Jurecekova J. Androgen receptor and soy isoflavones in prostate cancer (Review). Molecular and Clinical Oncology. 2019;10(2):191–204. https://doi.org/10.3892/mco.2018.1792
- Simental-Mendía LE, Gotto AM, Atkin SL, Banach M, Pirro M, Sahebkar A. Effect of soy isoflavone supplementation on plasma lipoprotein(a) concentrations: A meta-analysis. Journal of Clinical Lipidology. 2017;12(1):16–24. https://doi.org/10.1016/j.jacl.2017.10.004
- Wang S, Wang Y, Pan M-H, Ho C-T. Anti-obesity molecular mechanism of soy isoflavones: Weaving the way to new therapeutic. Food and Function. 2017;8(11):3831–3846. https://doi.org/10.1039/c7fo01094j
- Jeong D-Y, Ryu MS, Yang H-J, Park S. γ-PGA-Rich Chungkookjang, short-term fermented soybeans: Prevents memory impairment by modulating brain insulin sensitivity, neuro-inflammation, and the gut–microbiome–brain axis. Foods. 2021;10(2). https://doi.org/10.3390/foods10020221
- Feoktistova KA, Grigoriev NR, Borodin EA. The influence of the soy-beans riched diet on the cognitive function of rats. Far East Medical Journal. 2017;(1):70–74. (In Russ.).
- Bhatt PC, Pathak S, Kumar V, Panda BP. Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer's disease by fermented soybean nanonutraceutical. Inflammopharmacology. 2018;26(1):105–118. https://doi.org/10.1007/s10787-017-0381-9
- Smith BN, Dilger RN. Immunomodulatory potential of dietary soybean-derived isoflavones and saponins in pigs. Journal of Animal Science. 2018;96(4):1288–1304. https://doi.org/10.1093/jas/sky036
- Dossena S, Marino A. Cellular oxidative stress. Antioxidants. 2021;10(3). https://doi.org/10.3390/antiox10030399
- Rizzo G. The antioxidant role of soy and soy foods in human health. Antioxidants. 2020;9(7). https://doi.org/10.3390/antiox9070635
- Mazumder AR, Hongsprabhas P. Genistein as antioxidant and antibrowning agents in vivo and in vitro: A review. Biomedicine and Pharmacotherapy. 2016;82:379–392. https://doi.org/10.1016/j.biopha.2016.05.023
- Asbaghi O, Yaghubi E, Nazarian B, Kelishadi MR, Khadem H, Moodi V, et al. The effects of soy supplementation on inflammatory biomarkers: A systematic review and meta-analysis of randomized controlled trials. Cytokine. 2020;136. https://doi.org/10.1016/j.cyto.2020.155282
- Wypych TP, Marsland BJ, Ubags NDJ. The impact of diet on immunity and respiratory diseases. Annals of the American Thoracic Society. 2017;14(5):S339–S347. https://doi.org/10.1513/AnnalsATS.201703-255AW
- Kim I-S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants. 2021;10(7). https://doi.org/10.3390/antiox10071064
- Pabich M, Materska M. Biological effect of soy isoflavones in the prevention of civilization diseases. Nutrients. 2019;11(7): https://doi.org/10.3390/nu11071660
- Kim I-S, Hwang C-W, Yang W-S, Kim C-H. Current perspectives on the physiological activities of fermented soybean-derived Cheonggukjang. International Journal of Molecular Sciences. 2021;22(11). https://doi.org/10.3390/ijms22115746
- Kim I-S, Kim C-H, Yang W-S. Physiologically active molecules and functional properties of soybeans in human health – A current perspective. International Journal of Molecular Sciences. 2021;22(8). https://doi.org/10.3390/ijms22084054
- Statsenko ES, Litvinenko OV, Korneva NYu, Shtarberg MA, Borodin EA. New technology for functional dessert production based on soy and pumpkin. Food Processing: Tchniques and Technology. 2020;50(2):351–360. (In Russ.). https://doi.org/10.21603/2074-9414-2020-2-351-360
- Determination of the content of phospholipids [Internet]. [cited 2021 Dec 20]. Available from: https://www.chem21.info/info/1665386
- Chemist's Handbook 21 [Internet]. [cited 2021 Dec 20]. Available from: https://www.chem21.info/page/107228006230103096127033172128220092250234055138
- Sposob polucheniya desertov funkcional'nogo naznacheniya: pat. 2728374C1 Ros. Federaciya. № 2019135583 / Stacenko E. S. [i dr.]; zayavl. 05.11.2019; opubl. 29.07.2020; Byul. № 22. 9 s.
- Statsenko ES, Litvinenko OV, Korneva NYu, Pokotilo OV, Shtarberg MA, Borodin EA. Development of production process of functional food on the basis of soybeans and pumpkin. Food Industry. 2021;(7):41–45. (In Russ.). https://doi.org/10.52653/PPI.2021.7.7.011
- Bhatt PC, Pathak S, Kumar V, Panda BP. Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer's disease by fermented soybean nanonutraceutical. Inflammopharmacology. 2018;26(1):105–118. https://doi.org/10.1007/s10787-017-0381-9
- Statsenko ES, Litvinenko OV, Korneva NYu, Pokotilo OV. Method of producing functional purpose desserts. Russia patent RU 2728374C1. 2020.