ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Bioactive Anti-Aging Substances: Geroprotectors

Abstract
People are constantly exposed to adverse environmental factors that affect their health. If combined with hereditary predisposition, they may lead to gerontological changes that reduce healthy and working life expectancy. Some measures can prevent premature aging, e.g., a balanced diet or biologically active anti-aging substances also called geroprotectors. This article reviews biologically active geroprotectors with a view to select promising components for novel biologically active additives and functional foods.
The review covered five years of Russian research articles and patents on biologically active anti-aging agents indexed in the National Center for Biotechnology Information, ScienceDirect, eLIBRARY.RU, and the database of the Federal Institute of Industrial Property.
The domestic market demonstrates a growing demand for biologically active supplements: in 2023, it increased by 10% in value terms as consumers’ interest in a healthy and long life continues to grow. The review also included quality criteria for biologically active anti-ageing agents, e.g., such plant metabolites as vitamins, polyphenols, antioxidants, adaptogens, peptides, etc. Thymalin, epithalamin, dasatinib, and epithalon are available on the domestic market.
The list of potential anti-aging agents includes ethylamine, carnosine, glutathione, ubiquinone, curcumin, rutin, quercetin, resveratrol, senolytics, and sirutins. These biologically active substances prevent oxidative stress, accumulation of lipofuscin, and senescent cells. The most effective anti-aging agents come from Vitis amurensis, Rhodiola rosea, Schisandra chinensis, Galega officinalis, Eleutherococcus senticosus, Withania somnifera, and Panax ginseng.
Keywords
Geroprotectors, biologically active substances, antioxidants, aging, senolytics, adaptogens, plant metabolites
FUNDING
The research was part of State Assignment FZSR-2024-0008: Biologically active anti-ageing additives with plant metabolites: in vitro studies. It was conducted on the premises of the Shared-Use Center for Biotechnology, Kemerovo State University (KemSU).
REFERENCES
  1. UN forecast: Global population will reach eight billion this autumn [Internet]. [cited 2024 Mar 11]. Available from: https://news.un.org/ru/story/2022/07/1427472
  2. Sukhikh S, Babich O, Prosekov A, Patyukov N, Ivanova S. Future of chondroprotectors in the treatment of degenerative processes of connective tissue. Pharmaceuticals. 2020;13(9):220. https://doi.org/10.3390/ph13090220
  3. Pavlova TV, Proshchayev KI, Satarinova EE, Pilkevich NB, Pavlova LA. The evaluation of changes in muscle strength in elderly patients with premature aging. Medical Herald of the South of Russia. 2019;10(1):59–64. (In Russ.). https://doi.org/10.21886/2219-8075-2019-10-1-59-64; https://elibrary.ru/IVZAJI
  4. Ilnitski AN, Masnaya MV, Viktoriya DI, Galkina IYu, Sanches EA. Different morphotypes of skin aging in women and premature aging: Prevention and follow-up somatocognitive programs. Current Problems of Health Care and Medical Statistics. 2021;(2):61–72. (In Russ.). https://doi.org/10.24412/2312-2935-2021-2-61-72; https://elibrary.ru/KDGCKB
  5. Malyutina ES, Fesenko EV, Sanches EA, Ismanova VD, Kuzminov OM. Influence of clinical and biological variants of premature aging on cognitive functionality. Research Results in Biomedicine. 2021;7(2):164–172. https://doi.org/10.18413/2658-6533-2021-7-2-0-7
  6. Pristrom MS, Shtonda MV, Semenenkov II. A look at the problem of premature aging: Approaches to prevention. General Medicine: Journal of Scientific and Practical Therapy. 2021;(1):5–24. (In Russ.). https://elibrary.ru/MSIOAR
  7. Federal project: Improving people’s health [Internet]. [cited 2024 Mar 12]. Available from: https://minzdrav.gov.ru/poleznye-resursy/natsproektzdravoohranenie/zozh
  8. Praskova JuA, Kiseleva TF, Reznichenko IYu, Frolova NA, Shkrabtak NV, Lawrence Yu. Biologically active substances of Vitis amurensis Rupr.: Preventing premature aging. Food Processing: Techniques and Technology. 2021;51(1):159–169. (In Russ.). https://doi.org/10.21603/2074-9414-2021-1-159-169; https://elibrary.ru/WOOIQP
  9. Vesnina AD, Prosekov AYu, Dmitrieva AI, Asyakina LK, Velichkovich NS. Relevance of the use of plant extracts in the creation of functional products that have a geroprotective effect. International Journal of Pharmaceutical Research. 2020;12(3):1865–1879. https://doi.org/10.31838/ijpr/2020.12.03.261
  10. Vesnina AD, Dolganyuk VF, Dmitrieva AI, Loseva AI, Milentyeva IS. Evaluation of the geroprotective effect of squalene on the Caenorhabditis elegans model. Siberian Journal of Life Sciences and Agriculture. 2022;14(6):51–69. (In Russ.). https://doi.org/10.12731/2658-6649-2022-14-6-51-69; https://elibrary.ru/GLOGHP
  11. Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal of Theoretical Biology. 1973;41(1):181–190. https://doi.org/10.1016/0022-5193(73)90198-7
  12. Koltover VK. Antioxidant biomedicine: from free radical chemistry to systems biology mechanisms. Izvestiya Akademii Nauk. Seriya Khimicheskaya. 2010;(1):37–43. (In Russ.). https://elibrary.ru/TKWFSF
  13. Milentyeva IS, Vesnina AD, Fedorova AM, Ostapova EV, Larichev TA. Chlorogenic acid and biohanin A from Trifolium pratense L. callus culture extract: Functional activity in vivo. Food Processing: Techniques and Technology. 2023;53(4):754–765. (In Russ.). https://doi.org/10.21603/2074-9414-2023-4-2475
  14. Faskhutdinova ER, Sukhikh AS, Le VM, Minina VI, Khelef MEA, Loseva AI. Effects of bioactive substances isolated from Siberian medicinal plants on the lifespan of Caenorhabditis elegans. Foods and Raw Materials. 2022;10(2):340–352. https://doi.org/10.21603/2308-4057-2022-2-544
  15. Spivak IM, Slizhov PA, Pleskach NM, Nyrov VA, Panferov EV, Michelson VM. Overcoming accelerated and natural aging with geroprotectors. Health as the Basis of Human Potential: Problems and Solutions. 2018;13(1):133–143. (In Russ.). https://elibrary.ru/YTUESL
  16. Fedorova AM, Dyshlyuk LS, Milentyeva IS, Loseva AI, Neverova OA, Khelef MEA. Geroprotective activity of trans-cinnamic acid isolated from the Baikal skullcap (Scutellaria baicalensis). Food Processing: Techniques and Technology. 2022;52(3):582–591. (In Russ.). https://doi.org/10.21603/2074-9414-2022-3-2388
  17. Moskalev A, Chernyagina E, Tsvetkov V, Fedintsev A, Shaposhnikov M, Krut`ko V, et al. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell. 2016;15(3):407–415. https://doi.org/10.1111/acel.12463
  18. Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M. Geroprotectors: A unified concept and screening approaches. Aging and Disease. 2017;8(3):354–363. https://doi.org/10.14336/AD.2016.1022
  19. Khavinson VK, Morozov VG. Geroprotective effect of thymalin and epithalamin. Advances in Gerontology. 2002;(10):74–84. https://elibrary.ru/MPKSIV
  20. Moskalev AA, Krementsova AV, Malysheva OA. Melatonin influence on Drosophila melanogaster life span at different light regimes. Ecological Genetics. 2008;6(3):24–32. (In Russ.). https://elibrary.ru/JURGRZ
  21. Zaharova IN, Obynochnaya EG, Skorobogatova EV, Malachina OA. Influence of cudesan – anti-oxidant based on ubiquinon – upon lipid peroxidation activity and oxidative protection in cases of pediatric pyelonephritis. Pediatriya. 2005;84(4):75–78. (In Russ.). https://elibrary.ru/HSTEUV
  22. Danyo EK, Ivantsova MN. Fruit phytochemicals: Antioxidant activity and health-promoting properties. Foods and Raw Materials. 2025;13(1):58–72. https://doi.org/10.21603/2308-4057-2025-1-623
  23. Kravtsova LA, Shkolnikova MA. Use of coenzyme Q10 in cardiological care: biological and clinical aspects. Russian Bulletin of Perinatology and Pediatrics. 2008;53(1):51–57. (In Russ.). https://elibrary.ru/JUETQB
  24. Joshi SS, Sawant SV, Shedge A, Joshi SS, Sawant SV, Shedge A. Comparative bioavailability of two novel coenzyme Q10 preparations in humans. International Journal of Clinical Pharmacology and Therapeutics. 2003;41:42–48. https://doi.org/10.5414/CPP41042
  25. Orlova SV, Nikitina EA, Prokopenko EV, Balashova NV, Vodolazkaya AN. An ode to curcumin: One hundred mechanisms of curcumin’s effectiveness against human pathological conditions. Medical Alphabet. 2022;(16):127–134. (In Russ.). https://elibrary.ru/IVPWTV
  26. Srinivasan A, Selvarajan S, Kamalanathan S, Kadhiravan T, Lakshmi NCP, Adithan S. Effect of Curcuma longa on vascular function in native Tamilians with type 2 diabetes mellitus: A randomized, double-blind, parallel arm, placebo-controlled trial. Phytotherapy Research. 2019;33(7):1898–1911. https://doi.org/10.1002/ptr.6381
  27. Dadali YuV, Dadali VA, Makarov VG. Rapid catalytic method for preparing recovered form of coenzyme Q10 to be used in pharmaceutical and food compositions. Russia patent RU 2535928C1. 2014.
  28. Hallajzadeh J, Milajerdi A, Kolahdooz F, Amirani E, Mirzaei H, Asemi Z. The effects of curcumin supplementation on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Phytotherapy Research. 2019;33(11):2989–2995. https://doi.org/10.1002/ptr.6477
  29. Azhdari M, Karandish M, Mansoori A. Metabolic benefits of curcumin supplementation in patients with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Phytotherapy Research. 2019;33(5):1289–1301. https://doi.org/10.1002/ptr.6323
  30. Osali A. Aerobic exercise and nano-curcumin supplementation improve inflammation in elderly females with metabolic syndrome. Diabetology and Metabolic Syndrome. 2020;12:26. https://doi.org/10.1186/s13098-020-00532-4
  31. Soloveva NL, Sokurenkova MS, Zypyanov OA. Bioavailabilit y of curcumin and methods of its enhancing. Drug Development and Registration. 2018;(3):46–53. (In Russ.). https://elibrary.ru/XYDXNB
  32. Khavinson VKh, Kuznik BI, Ryzhak GA. Peptide geroprotectors as epigenetic regulators of physiology. St. Petersburg: Herzen State Pedagogical University of Russia; 2014. 271 p. (In Russ.). https://elibrary.ru/YSSNLD
  33. Bidzhieva AEh, Chiriapkin AS. Review of the biological activity of rutin: Antidiabetic, antioxidant, anti-inflammatory and antitumor. Bulletin of Science and Practice. 2023;9(8):48–57. (In Russ.). https://doi.org/10.33619/2414-2948/93/05; https://elibrary.ru/WKGTCO
  34. Kalinchenko SYu, Vorslov LO, Kurnikova IA, Gadzinva IV. A modern view on alpha-lipoic acid in practice. Effective Pharmacotherapy. 2012;(39):54–59. (In Russ.). https://elibrary.ru/SKFWVX
  35. Tebeneva PA, Bankov VI, Maklakova IYu. Senolytics and senostatics as potential geroprotectors. Original Studies. 2023;13(4):41–48. (In Russ.). https://elibrary.ru/LBLXCH
  36. Abdulkadyrov KM, Shuvaev VA, Martynkevich IS. Dasatinib: Ten years of clinical practice worldwide. Oncohematology. 2016;11(1):24–33. https://doi.org/10.17650/1818-8346-2016-11-1-24-33; https://elibrary.ru/WALWBN
  37. Ilyushchenko AK, Matchekhina LV, Tkacheva ON, Balashova AV, Melnitskaia AA, Churov AV, et al. Senolytic drugs: Implications for clinical practice. Problems of Geroscience. 2023;(1):7–14. (In Russ.). https://doi.org/10.37586/2949-4745-1-2023-7-14; https://elibrary.ru/EMMLUP
  38. Davinelli S, de Stefani D, de Vivo I, Scapagnini G. Polyphenols as caloric restriction mimetics regulating mitochondrial biogenesis and mitophagy. Trends in Endocrinology and Metabolism. 2020;31(7):536–550. https://doi.org/10.1016/j.tem.2020.02.011
  39. Kim DH, Bang EJ, Jung HJ, Noh SG, Yu BP, Choi YJ, et al. Anti-aging effects of calorie restriction (CR) and CR mimetics based on the senoinflammation concept. Nutrients. 2020;12(2):422. https://doi.org/10.3390/nu12020422
  40. Mandlik Ingawale DS, Namdeo AG. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. Journal of Dietary Supplements. 2020;18(2):183–226. https://doi.org/10.1080/19390211.2020.1741484
  41. Tandon N, Yadav SS. Safety and clinical effectiveness of Withania somnifera (Linn.) Dunal root in human ailments. Journal of Ethnopharmacology. 2020;255:112768. https://doi.org/10.1016/j.jep.2020.112768
  42. Pukhalskaia AE, Diatlova AS, Linkova NS, Kvetnoy IM. Sirtuins: The role in oxidative stress regulation and pathogenesis of neurodegenerative diseases. Progress in Physiological Science. 2021;52(1):90–104. (In Russ.). https://doi.org/10.31857/S0301179821010082
  43. Savitskiy DV, Linkova NS, Kozhevnikova EO, Kozlov KL, Paltseva EM, Kvetnaia TV. Sirtuins and chemokines as markers of replicative and induced senescence of human endotheliocytes. Acta Biomedica Scientifica. 2022;7(5–2):12–20. (In Russ.). https://doi.org/10.29413/ABS.2022-7.5-2.2
  44. Khavinson VK, Kopylov AT, Vaskovsky BV, Ryzhak GA, Lin’kova NS. Identification of peptide AEDG in the polypeptide complex of the pineal gland. Bulletin of Experimental Biology and Medicine. 2017;164(7):52–55. (In Russ.). https://elibrary.ru/ZCPSNB
  45. Khavinson VKh. Tetrapeptide showing geroprotective activity, pharmacological agent based on thereof and method of its use. Russia patent RU 2157233C1. 2000.
  46. Khavinson VKh, Popovich IG. Pineal peptides and their role in ageing. Pathogenesis. 2017;15(3):12–19. (In Russ.). https://doi.org/10.25557/GM.2017.3.8493; https://elibrary.ru/ZWOHQZ
  47. Bachurin SO, Grigorʹev VV. Geroprotector based on hydrogenated pyrido(4,3-b) indoles (variants), pharmacological agents, and application methods. Russia patent RU 2003135482A. 2005.
  48. Plotnikov EV. Composition with a geroprotector effect. Russia patent RU 2770515C1. 2022.
  49. Khavinson VK, Malinin VV, Ryzhak GA. Geroprotector activity exhibiting agent and a method for preparation thereof. Russia patent RU 2302870C1. 2007.
  50. Plotnikov EV. Geroprotector agent. Russia patent RU 2730133C1. 2020.
  51. Galactooligosaccharide composition and its application in prevention or treatment of cognitive dysfunction and emotional disorders in neuropsychiatric diseases or aging. Russia patent RU 2015146305A. 2017.
  52. Ladislas R, Rober A, Mokzar E. Oligosaccharides in preventing or combating tissue aging. Russia patent RU 96107214A. 1998.
  53. Chung YJ, Kim EM, Lee EJ. Peptide for the prevention of skin damage caused by atmospheric pollution and for anti-aging therapy, as well as its use. Russia patent RU 2773534C1. 2022.
  54. Kizoulis MG, Sautkholl M, Taker-Samaras SD. Compositions and methods for treatment of symptoms of aging. Russia patent RU 2532373C2. 2014.
  55. Fedorova AM, Loseva AI, Dyshlyuk LS, Minina VI. Optimization of extraction of active substances of callus and root cultures of Panax ginseng. Polzunovskiy Vestnik. 2021;(4):60–69. (In Russ.). https://doi.org/10.25712/ASTU.2072-8921.2021.04.009; https://elibrary.ru/PKDXDU
How to quote?
Fokina AD, Vesnina AD, Frolova AS, Chekushkina DYu, Proskuryakova LA, Aksenova LM. Bioactive Anti-Aging Substances: Geroprotectors. Food Processing: Techniques and Technology. 2024;54(2):423–435. (In Russ.). https://doi.org/10.21603/2074-9414-2024-2-2517 
About journal

Download
Contents
Abstract
Keywords
Funding
References