ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Перспективы использования микробиома почв угольных отвалов с целью ремедиации антропогенно нарушенных экосистем

Аннотация
Введение. Угольная промышленность способствует накоплению загрязняющих веществ в почве, таких как тяжелые металлы и полициклические ароматические углеводороды. Поэтому восстановление почвы является актуальной задачей. Цель исследования – обоснование использования микроорганизмов угольных отвалов в борьбе с загрязнением почвы тяжелыми металлами и нефтяными загрязнителями.
Объекты и методы исследования. Научные статьи, изданные за последние пять лет, а также источники, цитируемые в Scopus, Web of Science и Elibrary. В работе использовали методы анализа, систематизации и обобщения тематических публикаций современных баз данных.
Результаты и их обсуждение. Одним из результатов воздействия угольной промышленности является изменение ландшафта, животного и растительного мира, а также почвенного микробиома. Биоремедиация с использованием различных микроорганизмов является эффективным методом, позволяющим восстановить поврежденные участки почвы. Доказано, что микроорганизмы, выделенные из угольных отвалов, обладают устойчивостью к тяжелым металлам и полициклическим ароматическим углеводородам, а также способностью к их утилизации. Бактерии рода Bacillus, а также штамм Pseudomonas aeruginosa способны деградировать нефтяные загрязнители. Микроорганизмы видов Enterobacter и Klebsiella оказались устойчивы к меди, железу, свинцу и марганцу. Бактерии родов Bacillus, Arthrobacter, Pseudoarthrobacter и Sinomonas показали устойчивость к никелю, мышьяку и хрому. Арбускулярные микоризные грибы увеличивают активность почвенных ферментов, повышая плодородность почв и разлагая различные органические соединения.
Выводы. Методы секвенирования позволят определить видовой состав почв угольных отвалов с целью поиска новых штаммов, способных восстанавливать поврежденные участки.
Ключевые слова
Угольная промышленность , биоремедиация , тяжелые металлы , полициклические углеводороды , микробиом
ФИНАНСИРОВАНИЕ
Работа выполнена в рамках государственного задания для выполнения научно-исследовательских работ по теме «Разработка подходов к фиторемедиации посттехногенных ландшафтов с использованием стимулирующих рост растений ризобактерий (PGPB) “омиксных” технологий», дополнительное соглашение № 075-03-2021-189/4 от 30.09.2021 (внутренний номер 075-ГЗ/X4140/679/4). Работа выполнена с использованием оборудования Центра коллективного пользования научным оборудованием КемГУ.
СПИСОК ЛИТЕРАТУРЫ
  1. Teng Y., Chen W. Soil microbiomes – a promising strategy for contaminated soil remediation: a review // Pedosphere. 2019. Vol. 29. № 3. P. 283–297. https://doi.org/10.1016/S1002-0160(18)60061-X.
  2. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review / K. N. Palansooriya [et al.] // Environment International. 2020. Vol. 134. https://doi.org/10.1016/j.envint.2019.105046.
  3. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany / J. Rinklebe [et al.] // Environment International. 2019. Vol. 126. P. 76–88. https://doi.org/10.1016/j.envint.2019.02.011.
  4. Environmental consequences and the role of illegal waste dumps and their impact on land degradation / M. D. Vaverková [et al.] // Land Use Policy. 2019. Vol. 89. https://doi.org/10.1016/j.landusepol.2019.104234.
  5. Анализ экологических проблем в угледобывающих регионах / О. М. Зиновьева [и др.] // Уголь. 2020. Т. 1135. № 10. С. 62–67. https://doi.org/10.18796/0041-5790-2020-10-62-67.
  6. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? – A review / V. Antoniadis [et al.] // Environment International. 2019. Vol. 127. P. 819–847. https://doi.org/10.1016/j.envint.2019.03.039.
  7. Human health risk visualization of potentially toxic elements in farmland soil: A combined method of source and probability / F. Kong [et al.] // Ecotoxicology and Environmental Safety. 2021. Vol. 211. https://doi.org/10.1016/j.ecoenv.2021.111922.
  8. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology / G. Qin [et al.] // Chemosphere. 2020. Vol. 267. https://doi.org/10.1016/j.chemosphere.2020.129205.
  9. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece / V. Antoniadis [et al.] // Environment International. 2019. Vol. 124. P. 79–88. https://doi.org/10.1016/j.envint.2018.12.053.
  10. Biogeochemistry of trace elements in the environment – Editorial to the special issue / J. Rinklebe [et al.] // Journal of Environmental Management. 2017. Vol. 186. P. 127–130. https://doi.org/10.1016/j.jenvman.2016.11.046.
  11. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health / R. Khanam [et al.] // Science of the Total Environment. 2020. Vol. 699. https://doi.org/10.1016/j.scitotenv.2019.134330.
  12. Characteristic and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: a review / C. Wang [et al.] // Pedosphere. 2017. Vol. 27. № 1. P. 17–26. https://doi.org/10.1016/S1002-0160(17)60293-5.
  13. Human health assessment of sixteen priority polycyclic aromatic hydrocarbons in contaminated soils of northwestern Algeria / A. Halfadji [et al.] // Journal of Health Pollution. 2021. Vol. 11. № 31. https://doi.org/10.5696/2156-9614-11.31.210914.
  14. Estimation of toxicity equivalency and probabilistic health risk on lifetime daily intake of polycyclic aromatic hydrocarbons from urban residential soils / B. Kumar [et al.] // Human and Ecological Risk Assessment. 2015. Vol. 21. № 2. P. 434–444. https://doi.org/10.1080/10807039.2014.921530.
  15. Comparison of polyaromatic hydrocarbon residue concentrations in Clarias gariepinus smoked with traditional and mechanical kilns / O. Osineye [et al.] // Journal of Health and Pollution. 2020. Vol. 10. № 28. https://doi.org/10.5696/2156-9614-10.28.201215.
  16. Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by Sphingomonas spp. / K. Raghunandan [et al.] // 3Biotech. 2018. Vol. 8. № 1. https://doi.org/10.1007/s13205-018-1096-3.
  17. Singh S., Gupta V. K. Biodegradation and bioremediation of pollutants: perspectives strategies and applications // International Journal of Pharmacology and Biological Sciences. 2016. Vol. 10. № 1. P. 53–65.
  18. Spatial patterns of microbial diversity and activity in an aged creosote-contaminated site / S. Mukherjee [et al.] // ISME Journal. 2014. Vol. 8. № 10. P. 2131–2142. https://doi.org/10.1038/ismej.2014.151.
  19. Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices / L. S. Khudur [et al.] // Environmental Science and Pollution Research. 2015. Vol. 22. № 19. P. 14809–14819. https://doi.org/10.1007/s11356-015-4624-2.
  20. Aging effect of petroleum hydrocarbons in soil under different attenuation conditions / J. Tang [et al.] // Agriculture, Ecosystems and Environment. 2012. Vol. 149. P. 109–117. https://doi.org/10.1016/j.agee.2011.12.020.
  21. The impact of lead co-contamination on ecotoxicity and the bacterial community during the bioremediation of total petroleum hydrocarbon-contaminated soils / L. S. Khudur [et al.] // Environmental Pollution. 2019. Vol. 253. P. 939–948. https://doi.org/10.1016/j.envpol.2019.07.107.
  22. Microbial biodegradation of polyaromatic hydrocarbons / R.-H. Peng [et al.] // FEMS Microbiology Reviews. 2008. Vol. 32. № 6. P. 927–955. https://doi.org/10.1111/j.1574-6976.2008.00127.x.
  23. A review on remediation technologies for nickel-contaminated soil / X. Chen [et al.] // Human and Ecological Risk Assessment. 2019. Vol. 26. № 3. P. 571–585. https://doi.org/10.1080/10807039.2018.1539639.
  24. Ojuederie O. B., Babalola O. O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review // International Journal of Environmental Research and Public Health. 2017. Vol. 14. № 12. https://doi.org/10.3390/ijerph14121504.
  25. Yang Y., Li Y., Zhang J. Chemical speciation of cadmium and lead and their bioavailability to cole (Brassica campestris L.) from multi-metals contaminated soil in northwestern China // Chemical Speciation and Bioavailability. 2016. Vol. 28. № 1–4. P. 33–41. https://doi.org/10.1080/09542299.2016.1157005.
  26. The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine–affected agricultural soil / L. Zheng [et al.] // Annals of Microbiology. 2019. Vol. 69. № 8. P. 849–859. https://doi.org/10.1007/s13213-019-01478-3.
  27. The role of microorganisms in bioremediation – A review / E. Abatenh [et al.] // Open Journal of Environmental Biology. 2017. Vol. 2. № 1. P. 038–046. https://doi.org/10.17352/OJEB.000007.
  28. Petroleum hydrocarbon contamination in terrestrial ecosystems – fate and microbial responses / A. Truskewycz [et al.] // Molecules. 2019. Vol. 24. № 18. https://doi.org/10.3390/molecules24183400.
  29. Advances in microbial bioremediation and the factors influencing the process / J. Srivastava [et al.] // International Journal of Environmental Science and Technology. 2014. Vol. 11. № 6. P. 1787–1800. https://doi.org/10.1007/s13762-013-0412-z.
  30. Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil / F. Huang [et al.] // Colloids and Surfaces B: Biointerfaces. 2013. Vol. 107. P. 11–18. https://doi.org/10.1016/j.colsurfb.2013.01.062.
  31. Abdel-Monem M. O., Al-Zubeiry A. H. S., Al-Gheethi A. A. S. Biosorption of nickel by Pseudomonas cepacia 120S and Bacillus subtilis 117S // Water Science and Technology. 2010. Vol. 61. № 12. P. 2994–3007. https://doi.org/10.2166/wst.2010.198.
  32. Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete / Y. Lin [et al.] // Ecotoxicology and Environmental Safety. 2012. Vol. 77. P. 7–17. https://doi.org/10.1016/j.ecoenv.2011.09.016.
  33. Aryal M., Liakopoulou-Kyriakides M. Characterization of Mycobacterium sp. strain Spyr1 biomass and its biosorption behavior towards Cr(III) and Cr(VI) in single, binary and multi-ion aqueous systems // Journal of Chemical Technology and Biotechnology. 2014. Vol. 89. № 4. P. 559–568. https://doi.org/10.1002/jctb.4158.
  34. Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): Bioaccumulation and health risk assessment / B. A. M. Bandowe [et al.] // Environment International. 2014. Vol. 65. P. 135–146. https://doi.org/10.1016/j.envint.2013.12.018.
  35. Alkorta I., Epelde L., Garbisu C. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation // FEMS Microbiology Letters. 2017. Vol. 364. № 19. https://doi.org/10.1093/femsle/fnx200.
  36. Removal of aqueous phenanthrene by brown seaweed Sargassum hemiphyllum: Sorption-kinetic and equilibrium studies / M. K. Chung [et al.] // Separation and Purification Technology. 2007. Vol. 54. № 3. P. 355–362. https://doi.org/10.1016/j.seppur.2006.10.008.
  37. Sistla S. A., Schimel J. P. Seasonal patterns of microbial extracellular enzyme activities in an arctic tundra soil: Identifying direct and indirect effects of long-term summer warming // Soil Biology and Biochemistry. 2013. Vol. 66. P. 119–129. https://doi.org/10.1016/j.soilbio.2013.07.003.
  38. Effects of low-molecular-weight organic acids on Cu(II) adsorption onto hydroxyapatite nanoparticles / Y.-J. Wang [et al.] // Journal of Hazardous Materials. 2009. Vol. 162. № 2–3. P. 1135–1140. https://doi.org/10.1016/j.jhazmat.2008.06.001.
  39. Low-molecular-weight organic acids enhance the release of bound PAH residues in soils / Y. Gao [et al.] // Soil and Tillage Research. 2015. Vol. 145. P. 103–110. https://doi.org/10.1016/j.still.2014.09.008.
  40. Effects of re-vegetation type and arbuscular mycorrhizal fungal inoculation on soil enzyme activities and microbial biomass in coal mining subsidence areas of Northern China / L. Xiao [et al.] // Catena. 2019. Vol. 177. P. 202–209. https://doi.org/10.1016/j.catena.2019.02.019.
  41. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels / Q.-S. Wu [et al.] // Mycorrhiza. 2014. Vol. 25. № 2. P. 121–130. https://doi.org/10.1007/s00572-014-0594-3.
  42. Turan V. Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes // Physiologia Plantarum. 2021. Vol. 173. № 1. P. 418–429. https://doi.org/10.1111/ppl.13490.
  43. Bacteria associated with a commercial mycorrhizal inoculum: Community composition and multifunctional activity as assessed by Illumina sequencing and culture-dependent tools / M. Agnolucci [et al.] // Frontiers in Plant Science. 2019. Vol. 9. https://doi.org/10.3389/fpls.2018.01956.
  44. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota / N. B. Svenningsen [et al.] // ISME Journal. 2018. Vol. 12. № 5. P. 1296–1307. https://doi.org/10.1038/s41396-018-0059-3.
  45. Dzionek A., Wojcieszyńska D., Guzik U. Natural carriers in bioremediation: A review // Electronic Journal of Biotechnology. 2016. Vol. 23. P. 28–36. https://doi.org/10.1016/j.ejbt.2016.07.003.
  46. Pimmata P., Reungsang A., Plangklang P. Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation // International Biodeterioration and Biodegradation. 2013. Vol. 85. P. 196–204. https://doi.org/10.1016/j.ibiod.2013.07.009.
  47. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: Change in bacterial community / R. Simarro [et al.] // Journal of Hazardous Materials. 2013. Vol. 262. P. 158–167. https://doi.org/10.1016/j.jhazmat.2013.08.025.
  48. Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils / C. Garbisu [et al.] // Frontiers in Microbiology. 2017. Vol. 8. https://doi.org/10.3389/fmicb.2017.01966.
  49. Домрачева Л. И., Широких И. Г. Использование организмов и биосистем в ремедиации территорий // Биологический мониторинг природно-техногенных систем / под ред. Т. Я. Ашихминой, Н. М. Алалыкиной. Сыктывкар: Институт биологии Коми научного центра Уральского отделения РАН, 2011. С. 160–176.
  50. Ножевникова А. Н. Биоремедиация загрязненных почв и грунтов // Экология микроорганизмов / под ред. А. И. Нетрусова. М.: Академия, 2004. С. 196–199.
  51. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents / M. J. Blaylock [et al.] // Environmental Science and Technology. 1997. Vol. 31. № 3. P. 860–865. https://doi.org/10.1021/es960552a.
  52. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria / Z.-B. Yue [et al.] // Bioresource Technology. 2015. Vol. 194. P. 399–402. https://doi.org/10.1016/j.biortech.2015.07.042.
  53. Anirudhan T. S., Jalajamony S., Sreekumari S. S. Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites // Applied Clay Science. 2012. Vol. 65–66. P. 67–71. https://doi.org/10.1016/j.clay.2012.06.005.
  54. Microorganism remediation strategies towards heavy metals / K. Yin [et al.] // Chemical Engineering Journal. 2019. Vol. 360. P. 1553–1563. https://doi.org/10.1016/j.cej.2018.10.226.
  55. Metabolic versatility of gram positive microbial isolates from contaminated river sediments / T. Narancic [et al.] // Journal of Hazardous Materials. 2012. Vol. 215–216. P. 243–251. https://doi.org/10.1016/j.jhazmat.2012.02.059.
  56. Toxicity of zinc heterotrophic bacteria from a tropical river sediment / C. O. Nweke [et al.] // Applied Ecology and Environmental Research. 2007. Vol. 5. № 1. P. 123–132. https://doi.org/10.15666/aeer/0501_123132.
  57. Lăzăroaie M. M. Multiple response of gram positive and gram negative bacteria to mixture of hydrocarbons // Brazilian Journal of Microbiology. 2010. Vol. 41. № 3. P. 649–667. https://doi.org/10.1590/S1517-83822010000300016.
  58. Zahir Z., Seed K. D., Dennis T. J. Isolation and characterization of novel organic solvent tolerant bacteria // Extremophiles. 2006. Vol. 10. № 2. P. 129–138. https://doi.org/10.1007/s00792-005-0483-y.
  59. Isolation of new toluene-tolerant marine strains of bacteria and characterization of their solvent-tolerance properties / A. Segura [et al.] // Journal of Applied Microbiology. 2008. Vol. 104. № 5. P. 1408–1416. https://doi.org/10.1111/j.1365-2672.2007.03666.x.
  60. Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates / S. Iram [et al.] // Arabian Journal for Science and Engineering. 2015. Vol. 40. № 7. P. 1867–1873. https://doi.org/10.1007/s13369-015-1702-1.
  61. Dhal B., Abhilash, Pandey B. D. Mechanism elucidation and adsorbent characterization for removal of Cr(VI) by native fungal adsorbent // Sustainable Environment Research. 2018. Vol. 28. № 6. P. 289–297. https://doi.org/10.1016/j.serj.2018.05.002.
  62. Ramrakhiani L., Majumder R., Khowala S. Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: Surface characterization and mechanism of biosorption // Chemical Engineering Journal. 2011. Vol. 171. № 3. P. 1060–1068. https://doi.org/10.1016/j.cej.2011.05.002.
  63. Kang C.-H., Kwon Y.-J., So J.-S. Bioremediation of heavy metals by using bacterial mixtures // Ecological Engineering. 2016. Vol. 89. P. 64–69. https://doi.org/10.1016/j.ecoleng.2016.01.023.
  64. Microbes as potential tool for remediation of heavy metals: A review / A. Gupta [et al.] // Journal of Microbial and Biochemical Technology. 2016. Vol. 8. № 4. P. 364–372. https://doi.org/10.4172/1948-5948.1000310.
  65. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes / R. Dixit [et al.] // Sustainability. 2015. Vol. 7. № 2. P. 2189–2212. https://doi.org/10.3390/su7022189.
  66. Bioremediation of polluted waters using microorganisms / L. M. Coelho [et al.] // Advances in bioremediation of wastewater and polluted soil / editor N. Shiomi. IntechOpen, 2015. P. 1–22. https://doi.org/10.5772/60770.
  67. Ayangbenro A. S., Babalola O. O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents // International Journal of Environmental Research and Public Health. 2017. Vol. 14. № 1. https://doi.org/10.3390/ijerph14010094.
  68. Fomina M., Gadd G. M. Biosorption: Current perspectives on concept, definition and application // Bioresource Technology. 2014. Vol. 160. P. 3–14. https://doi.org/10.1016/j.biortech.2013.12.102.
  69. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses / D. L. Lane [et al.] // Proceedings of the National Academy of Sciences of the United States of America. 1985. Vol. 82. № 20. P. 6955–6959. https://doi.org/10.1073/pnas.82.20.6955.
  70. Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co-culture with Sedimentibacter sp. / F. Maphosa [et al.] // Environmental Microbiology Reports. 2012. Vol. 4. № 6. P. 604–616. https://doi.org/10.1111/j.1758-2229.2012.00376.x.
  71. Glenn T. C. Field guide to next-generation DNA sequencers // Molecular Ecology Resources. 2011. Vol. 11. № 5. P. 759–769. https://doi.org/10.1111/j.1755-0998.2011.03024.x.
  72. Techtmann S. M., Hazen T. C. Metagenomic applications in environmental monitoring and bioremediation // Journal of Industrial Microbiology and Biotechnology. 2016. Vol. 43. № 10. P. 1345–1354. https://doi.org/10.1007/s10295-016-1809-8.
  73. Delmont T. O., Simonet P., Vogel T. M. Describing microbial communities and performing global comparisons in the ‘omic era // ISME Journal. 2012. Vol. 6. № 9. P. 1625–1628. https://doi.org/10.1038/ismej.2012.55.
  74. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction / F. Donot [et al.] // Carbohydrate Polymers. 2012. Vol. 87. № 2. P. 951–962. https://doi.org/10.1016/j.carbpol.2011.08.083.
  75. Экологические ущербы территорий образования и накопления горнопромышленных отходов / В. Б. Болтыров [и др.] // Сергеевские чтения: Материалы годичной сессии Научного совета РАН по проблемам геоэкологии, инженерной геологии и гидрогеологии. Пермь, 2019. С. 151–156.
  76. Pollution assessment and spatial distribution characteristics of heavy metals in soils of coal mining area in Longkou City / S. Liu [et al] // Huanjing Kexue/Environmental Science. 2016. Vol. 37. № 1. P. 270–279. https://doi.org/10.13227/j.hjkx.2016.01.035.
  77. Акулова А. С. Рекультивация как условие восстановления земель, нарушенных угольной промышленностью // Наука в современном информационном обществе: Материалы XII международной научно-практической конференции. Норт-Чарлстон, 2017. С. 29–34.
  78. Трегубов Е. А. Анализ воздействия на окружающую среду предприятий по добыче угля // Актуальные проблемы строительства, ЖКХ и техносферной безопасности: Материалы V Всероссийской научно-технической конференции молодых исследователей (с международным участием). Волгоград, 2018. С. 238–240.
  79. Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social-ecological systems in Arctic and boreal regions: A systematic map protocol / N. R. Haddaway [et al.] // Environmental Evidence. 2019. Vol. 8. № 1. https://doi.org/10.1186/s13750-019-0152-8.
  80. Restoration of rare earth mine areas: organic amendments and phytoremediation / L. Zhou [et al.] // Environmental Science and Pollution Research. 2015. Vol. 22. № 21. P. 17151–17160. https://doi.org/10.1007/s11356-015-4875-y.
  81. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review / A. Mahar [et al.] // Ecotoxicology and Environmental Safety. 2016. Vol. 126. P. 111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023.
  82. Mitchell C. J. A., O'Neill K. The Sherriff Creek Wildlife Sanctuary: Further evidence of mine-site repurposing and economic transition in northern Ontario // Extractive Industries and Society. 2017. Vol. 4. № 1. P. 24–35. https://doi.org/10.1016/j.exis.2016.11.007.
  83. Effects of underground mining on vegetation and environmental patterns in a semi-arid watershed with implications for resilience management / Y. Yang [et al.] // Environmental Earth Sciences. 2018. Vol. 77. № 17. https://doi.org/10.1007/s12665-018-7796-5.
  84. Human health risk assessment of mercury vapor around the artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia / K. Nakazawa [et al.] // Ecotoxicology and Environmental Safety. 2016. Vol. 124. P. 155–162. https://doi.org/10.1016/j.ecoenv.2015.09.042.
  85. Progresses in restoration of post-mining landscape in Africa / S. E. Festin [et al.] // Journal of Forestry Research. 2018. Vol. 30. № 2. P. 381–396. https://doi.org/10.1007/s11676-018-0621-x.
  86. The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils / A. Jozefowska [et al.] // Geoderma. 2017. Vol. 292. P. 9–16. https://doi.org/10.1016/j.geoderma.2017.01.008.
  87. Hatcher P. G., Clifford D. J. The organic geochemistry of coal: from plant material to coal // Organic Geochemistry. 1997. Vol. 27. № 5–6. P. 251–274. https://doi.org/10.1016/S0146-6380(97)00051-X.
  88. Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China / Q. Tang [et al.] // Fuel. 2013. Vol. 107. P. 315–322. https://doi.org/10.1016/j.fuel.2013.01.009.
  89. Long-term stacking coal promoted soil bacterial richness associated with increased soil organic matter in coal yards of power plants / C. Shen [et al.] // Journal of Soils and Sediments. 2019. Vol. 19. № 10. P. 3442–3452. https://doi.org/10.1007/s11368-019-02307-5.
  90. Impacts of coal mining on the aboveground vegetation and soil quality: a case study of Qinxin coal mine in Shanxi province, China / G. Donggan [et al.] // Clean – Soil, Air, Water. 2011. Vol. 39. № 3. P. 219–225. https://doi.org/10.1002/clen.201000236.
  91. Coal mining practices reduce the microbial biomass, richness and diversity of soil / P. D. de Quadros [et al.] // Applied Soil Ecology. 2018. Vol. 98. P. 195–203. https://doi.org/10.1016/j.apsoil.2015.10.016.
  92. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China / X. Liu [et al.] // Ecological Engineering. 2017. Vol. 98. P. 228–239. https://doi.org/10.1016/j.ecoleng.2016.10.078.
  93. Structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa: bioindicators of soil ecosystem restoration / O. T. Ezeokoli [et al.] // Scientific Reports. 2020. Vol. 10. № 1. https://doi.org/10.1038/s41598-020-58576-5.
  94. Stability and dynamics of enzyme activity patterns in the rice rhizosphere: Effects of plant growth and temperature / T. Ge [et al.] // Soil Biology and Biochemistry. 2017. Vol. 113. P. 108–115. https://doi.org/10.1016/j.soilbio.2017.06.005.
  95. Nitrous oxide flux, ammonia oxidizer and denitrifier abundance and activity across three different landfill cover soils in Ningbo, China / X.-E. Long [et al.] // Journal of Cleaner Production. 2018. Vol. 170. P. 288–297. https://doi.org/10.1016/j.jclepro.2017.09.173.
  96. Nitrification and nitrifiers in acidic soils / Y. Li [et al.] // Soil Biology and Biochemistry. 2018. Vol. 116. P. 290–301. https://doi.org/10.1016/j.soilbio.2017.10.023.
  97. Enhancement of anaerobic acidogenesis by integrating an electrochemical system into an acidogenic reactor: Effect of hydraulic retention times (HRT) and role of bacteria and acidophilic methanogenic Archaea / J. Zhang [et al.] // Bioresource Technology. 2015. Vol. 179. P. 43–49. https://doi.org/10.1016/j.biortech.2014.11.102.
  98. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time / G. Baek [et al.] // Applied Microbiology and Biotechnology. 2016. Vol. 100. № 2. P. 927–937. https://doi.org/10.1007/s00253-015-7018-y.
  99. Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice / S. Tiwari [et al.] // Frontiers in Plant Science. 2017. Vol. 8. https://doi.org/10.3389/fpls.2017.01510.
  100. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments / C. M. Hansel [et al.] // ISME Journal. 2015. Vol. 9. № 11. P. 2400–2412. https://doi.org/10.1038/ismej.2015.50.
  101. Members of Microvirga and Bradyrhizobium genera are native endosymbiotic bacteria nodulating Lupinus luteus in Northern Tunisian soils / A. Msaddak [et al.] // FEMS Microbiology Ecology. 2017. Vol. 93. № 6. https://doi.org/10.1093/femsec/fix068.
  102. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth / S. Asaf [et al.] // Critical Reviews in Biotechnology. 2020. Vol. 40. № 2. P. 138–152. https://doi.org/10.1080/07388551.2019.1709793.
  103. Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint / L. W. Marzan [et al.] // Egyptian Journal of Aquatic Research. 2017. Vol. 43. № 1. P. 65–74. https://doi.org/10.1016/j.ejar.2016.11.002.
  104. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review / B. E. Igiri [et al.] // Journal of Toxicology. 2018. Vol. 2018. https://doi.org/10.1155/2018/2568038.
  105. Singh K. N., Narzary D. Heavy metal tolerance of bacterial isolates associated with overburden strata of an opencast coal mine of Assam (India) // Environmental Science and Pollution Research. 2021. Vol. 28. № 44. P. 63111–63126. https://doi.org/10.1007/s11356-021-15153-1.
  106. Weil R. R., Brady N. C. The soils around us // The nature and properties of soils / editors R. R. Weil, N. C. Brady. Boston: Pearson, 2017. P. 19–50.
  107. Isolation and molecular characterization of bacteria to heavy metals isolated from soil samples in Bokaro Coal Mines, India / V. Gandhi [et al.] // Pollution. 2015. Vol. 1. № 3. P. 287–295.
  108. Soil ecophysiological and microbiological indices of soil health: a study of coal mining site in Sonbhadra, Uttar Pradesh / N. Upadhyay [et al.] // Journal of Soil Science and Plant Nutrition. 2016. Vol. 16. № 3. P. 778–800. https://doi.org/10.4067/S0718-95162016005000056.
  109. Bioremediation of polycyclic aromatic hydrocarbons from industry contaminated soil using indigenous Bacillus spp. / P. Mandree [et al.] // Processes. 2021. Vol. 9. № 9. https://doi.org/10.3390/pr9091606.
  110. Efficient biodegradation of petroleum n-alkanes and polycyclic aromatic hydrocarbons by polyextremophilic Pseudomonas aeruginosa san ai with multidegradative capacity / A. Medic [et al.] // RSC Advances. 2020. Vol. 10. № 24. P. 14060–14070. https://doi.org/10.1039/C9RA10371F.
  111. Diesel degradation efficiency of Enterobacter sp., Acinetobacter sp., and Cedecea sp. isolated from petroleum waste dumping site: a bioremediation view point / I. Jerin [et al.] // Archives of Microbiology. 2021. Vol. 203. № 8. P. 5075–5084. https://doi.org/10.1007/s00203-021-02469-2.
Как цитировать?
Фасхутдинова Е. Р., Осинцева М. A., Неверова О. А. Перспективы использования микробиома почв угольных отвалов с целью ремедиации антропогенно нарушенных экосистем. Техника и технология пищевых производств, 2021, вып. 51, том. 4, стр. 883-904
DOI
http://doi.org/10.21603/2074-9414-2021-4-883-904
Издатель
Кемеровский государственный университет
https://kemsu.ru
ISSN
2074-9414 (Print) /
2313-1748 (Online)
О журнале